
Distributed Algorithms and Protocols for Scalable Internet

Telephony

Jonathan Rosenberg

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2001

c©2001

Jonathan Rosenberg

All Rights Reserved

ABSTRACT

Distributed Algorithms and Protocols for Scalable Internet

Telephony

Jonathan Rosenberg

Internet telephony service is defined as the provision of real-time, interactive, multimedia telecom-

munications services between human users, using the public Internet.

The most difficult problem in providing Internet telephony is to overcome the increased

jitter, delay, and loss (as compared to circuit-switched networks) suffered by voice. Past work

has separately investigated Forward Error Correction (FEC) and playout buffer adaptation mech-

anisms to resolve these problems. We show that these mechanisms must be considered jointly. We

propose and simulate a number of algorithms for integrating FEC into playout buffer adaptation

schemes, and show that they are superior to non-integrated algorithms.

Receiving feedback about network transport quality is essential for supporting adaptive

applications. We examine the issues surrounding scalability of transport feedback in large scale

multicast groups. We present, analyze, and simulate a class of algorithms termed reconsideration,

which support congestion controlled feedback in highly dynamic groups, and then show how the

memory requirements of our algorithms can be reduced.

We consider signaling protocols for providing call establishment, management, features,

and applications. After an analysis of existing Internet telephony signaling protocols, we propose

a new protocol, the Session Initiation Protocol (SIP), which overcomes the limitations of existing

protocols. We describe an implementation of this protocol in software, and discuss applications

we have built with it.

We consider interconnection with the telephone network, and focus on the problem of

discovery of telephony gateways. We show that this is a subset of a broader wide area service

discovery problem. After reviewing existing protocols for resource discovery (and finding them

lacking for wide area applications), we present a scalable protocol for wide area service discovery,

which is ideal for discovery of gateways, amongst other resources.

Finally, we consider the problem of a service architecture for Internet telephony, which

provides features and complex applications to users. We review the service architectures that have

been presented in the literature. We then propose our architecture, the application component

architecture, which combines the best aspects of existing work. We show how this architecture

can be used to provide several complex applications.

Contents

List of Tables x

List of Figures xi

Acknowledgments xv

Chapter 1 Introduction 1

1.1 Components of an Internet Telephony Service 2

1.1.1 Organization . 3

Chapter 2 Transport 5

2.1 Introduction . 5

2.2 Internet Measurements . 6

2.2.1 Previous Work . 6

2.2.2 Measurement Approach . 8

2.2.3 Results for Receivers . 11

2.2.4 Results for Senders . 17

2.2.5 Conclusions . 23

2.3 Review of Existing Recovery Mechanisms . 23

2.4 Media Aware vs. Media Unaware Recovery . 25

2.4.1 Resynchronization Time . 26

2.4.2 Magnitude of Error . 29

2.4.2.1 Objective Measurements . 29

i

2.4.2.2 Subjective Measurements . 31

2.4.3 Contribution of Resynchronization . 32

2.4.3.1 Objective Comparison . 33

2.4.3.2 Subjective Tests . 34

2.5 Integrating FEC with Playout Buffers . 34

2.5.1 The Coupling Effect . 36

2.5.1.1 Redundant Codecs . 37

2.5.1.2 Reed-Solomon FEC . 38

2.5.1.3 Conditions for Dependency 40

2.5.1.4 A Note on Applicability . 41

2.5.2 Existing Playout Buffer Algorithms . 41

2.5.3 New Playout Buffer Algorithms . 43

2.5.3.1 Virtual Delay Algorithms . 44

2.5.3.1.1 Formulation for Redundant Codecs 44

2.5.3.1.2 Formulation for Reed Solomon FEC 45

2.5.3.1.3 Implementation . 45

2.5.3.1.4 Proof of Correctness 45

2.5.3.1.5 Supporting Target Loss Probabilities 48

2.5.3.2 “Previous Optimal” Algorithm 50

2.5.3.3 Model-Based “Analytical” Playout Adaptation Algorithm . . . 52

2.5.4 Simulations . 56

2.5.4.1 Simulation Model . 56

2.5.4.2 Coupled vs. Uncoupled . 57

2.5.4.3 Comparisons of New Algorithms 62

2.5.4.3.1 Using FEC with Minimal Delays 62

2.5.4.3.2 Achieving a Specific Loss Target 64

2.5.4.3.3 Achieving a Varying Loss Target 64

2.6 Transport of Media-Unaware FEC . 67

2.6.1 Transport Requirements . 68

ii

2.6.2 Previous Work . 68

2.6.3 Our Approach . 70

2.6.3.1 Overview . 70

2.6.3.2 Details . 71

2.6.3.2.1 FEC Packet Structure 71

2.6.3.2.1.1 RTP Header of FEC Packets 71

2.6.3.2.1.2 FEC Header 72

2.6.3.2.2 Protection Operation 73

2.6.3.2.3 Reconstruction . 74

2.6.4 Determination of the Set of Packets . 75

2.6.4.1 Reduction . 76

2.6.4.2 Computing T . 77

2.7 Conclusion and Future Work . 79

Chapter 3 QoS Feedback 81

3.1 Introduction . 81

3.2 Overview of RTP . 83

3.2.1 RTCP: Control and Management . 84

3.2.2 Scaling RTP . 85

3.3 Problems with RTCP Feedback . 87

3.3.1 Congestion . 88

3.3.2 State Storage . 89

3.3.3 Delay . 89

3.4 Requirements of a Solution for IP telephony . 89

3.5 Taxonomizing the Solution Space . 90

3.5.1 Feedback Destination: Where . 90

3.5.2 Feedback Mechanism: How . 91

3.5.3 Feedback Source: Who . 92

3.5.4 Feedback Content: What . 93

3.5.5 Congestion Control: When . 93

iii

3.6 Solution Space . 94

3.6.1 Existing Solutions . 95

3.6.1.1 Summarizers . 95

3.6.1.2 Polling . 96

3.6.1.3 Separate Multicast Groups 97

3.6.1.4 Event-Based Reporting . 98

3.6.2 Additional Approaches . 99

3.7 Reconsideration Algorithm . 100

3.7.1 Ideal Behavior . 104

3.7.2 Simulations . 105

3.7.3 Analysis . 110

3.7.3.1 No Delay . 111

3.7.3.1.1 Computing the Send Probability 112

3.7.3.1.2 Computing the Scheduled Rate 113

3.7.3.1.3 Obtaining the ODE 117

3.7.3.1.4 Computing the Level of Congestion 117

3.7.3.1.5 Reconsideration as a Control Mechanism 119

3.7.3.1.6 Computing the Convergence Time 120

3.7.3.2 Modeling Delay and Loss . 120

3.7.3.2.1 Number of Packets Sent for Conditional Reconsider-

ation . 122

3.7.3.2.2 Number of Packets Sent for Unconditional Reconsid-

eration . 124

3.7.3.2.3 Duration of Plateau Period 125

3.7.3.3 Linear Joins . 126

3.7.3.4 Steady State Behavior . 130

3.7.3.5 Fairness . 134

3.7.3.6 Single User Joins Late . 135

3.8 BYE Reconsideration Algorithm . 137

iv

3.9 Reverse Reconsideration . 140

3.9.1 Quantifying the Problem . 141

3.9.1.1 Long Declines . 143

3.9.1.2 Rapid Declines . 144

3.9.2 Reverse Reconsideration Algorithm . 145

3.9.3 Performance . 148

3.10 Group Sampling . 149

3.10.1 Basic Operation . 150

3.10.1.1 Performance . 151

3.10.2 Increasing the Sampling Probability . 152

3.10.3 Reducing the Sampling Probability . 152

3.10.3.1 Corrective Factors . 153

3.10.3.2 Binning Algorithm . 155

3.10.3.3 Comparison . 156

3.10.4 Sender Sampling . 157

3.11 Conclusions . 158

Chapter 4 Signaling Protocols 160

4.1 Introduction . 160

4.2 Requirements for a Signaling Protocol . 161

4.3 Existing Signaling Protocols . 163

4.3.1 BICC . 164

4.3.2 H.323 . 164

4.4 SIP Overview . 166

4.4.1 Protocol Components . 167

4.4.2 SIP Network Servers . 168

4.4.3 SIP Messages . 171

4.4.4 Addressing and Naming . 172

4.4.5 Initiating, Modifying, and Terminating Calls 173

4.4.6 Registrations . 174

v

4.4.7 Session Description Protocol Usage . 175

4.4.8 SIP as a Tool for New Services . 177

4.4.8.1 MIME . 177

4.4.8.2 URIs . 179

4.5 Implementation . 179

4.5.1 Events and Threading . 180

4.5.2 Processing Architecture . 182

4.5.3 Server State Machine . 185

4.5.4 Client State Machine . 188

4.5.5 Mediator State Machine . 190

4.5.6 Server API . 193

4.5.7 Memory Management . 194

4.5.8 Services . 195

4.6 Conclusions and Future Work . 196

Chapter 5 Gateway and Service Discovery 198

5.1 Introduction . 198

5.2 Problem Definition . 199

5.2.1 Gateways . 199

5.2.2 General Services . 204

5.3 Related Work . 208

5.4 Existing Solutions . 209

5.4.1 Centralized Databases . 210

5.4.1.1 Service Location Protocol . 211

5.4.1.2 Discussion . 212

5.4.2 Replicated Databases . 213

5.4.3 Distributed Databases . 214

5.4.3.1 DNS . 214

5.4.3.2 LDAP and X.500 . 216

5.4.4 Indexed Databases . 217

vi

5.4.4.1 Telephony Routing over IP (TRIP) 219

5.4.4.2 Discussion . 222

5.4.5 Multicast Push and Pull . 223

5.4.6 Summary of Existing Architectures . 224

5.5 Wide Area Service Discovery Protocol . 225

5.5.1 Terms . 226

5.5.2 Basic Operation . 227

5.5.3 BA URL’s and Attributes . 229

5.5.4 Message Formats . 230

5.5.5 SA Behavior . 230

5.5.6 DA Behavior . 232

5.5.6.1 Multicast Listening . 233

5.5.6.2 Contacting BA’s . 233

5.5.6.3 Multicasting DAAdverts . 235

5.5.7 AA Behavior . 235

5.5.8 BA Behavior . 236

5.5.8.1 Receiving Advertisements . 236

5.5.8.2 Policy . 236

5.5.8.3 Policing . 237

5.5.9 Sending Multicast Advertisements . 237

5.5.10 Scheduling Transmission of Advertisements 238

5.5.10.1 Timing Out Senders . 239

5.5.10.2 Minimum Transmission Interval 240

5.5.11 Multicast Groups . 240

5.5.12 Reducing the Storage Requirements of a BA 240

5.6 Conclusion . 241

Chapter 6 Application Architecture 242

6.1 Introduction . 242

6.2 Requirements for an Internet Telephony Service Architecture 243

vii

6.3 Existing Architectures . 246

6.3.1 Centralized Architectures . 246

6.3.1.1 Intelligent Network . 246

6.3.1.2 MGCP . 249

6.3.2 Distributed Software Architectures . 250

6.3.3 Distributed Component Architectures 253

6.3.4 Mobile Agents . 256

6.3.4.1 General Purpose Languages 256

6.3.4.2 Domain Specific Languages 257

6.4 Application Component Architecture . 258

6.4.1 Dialog Component . 263

6.4.2 Mixing Component . 268

6.4.3 Text-To-Speech Component . 270

6.4.4 Additional Session Components . 271

6.4.5 Presence Component . 272

6.4.6 Additional Components . 275

6.4.7 Controller . 276

6.4.8 Third Party Call Control . 278

6.4.8.1 Basic Flow . 279

6.4.8.2 Advanced Flow . 280

6.4.8.3 Continued Processing of Third Party Calls 281

6.4.8.4 End User Initiates Call . 283

6.4.9 Obtaining Data from End Users . 284

6.4.9.1 Stimulus Signaling . 286

6.4.9.2 Functional Signaling . 288

6.5 Target Services . 289

6.5.1 Pre-Paid Calling Card . 290

6.5.2 Click-to-dial . 291

6.5.3 Auto-conference . 293

viii

6.5.4 Web Form Entry for Call Center . 297

6.5.5 Speech-to-text for the Hearing Impaired 298

6.6 Comparison to Existing Architectures . 300

6.6.1 DFC and ECLIPSE . 300

6.6.2 Distributed Software and Component Architectures 301

6.6.3 Mobile Agents . 303

6.6.4 Centralized Architectures . 303

6.7 Conclusions and Future Work . 303

Chapter 7 Conclusion and Future Work 305

ix

List of Tables

2.1 Locations of stations . 9

2.2 Statistics of Traces . 10

2.3 Resynchronization Time vs. Burst Length . 29

2.4 MSE vs. Burst Length . 30

2.5 Subjective Evaluation of Speech Quality . 31

2.6 Avg. and SD of MSE for mix1 and mix2 . 33

3.1 Operating Point of Summarizers in the Feedback Taxonomy 97

3.2 Operating Point of Polling in the Feedback Taxonomy 97

3.3 Operating Point of Separate Multicast Groups in the Feedback Taxonomy 98

3.4 Operating Point of Event Based Reporting in the Feedback Taxonomy 99

3.5 Transient Behavior for Various Group Sizes . 126

3.6 Group Size Estimate with Sampling Algorithms 157

x

List of Figures

2.1 Measurement setup . 9

2.2 Mean loss probability for trace 1 . 12

2.3 Mean loss probability for trace 2 . 12

2.4 Mean loss probability for trace 3 . 13

2.5 Conditional loss probability for trace 1 . 14

2.6 Conditional loss probability for trace 2 . 14

2.7 Conditional loss probability for trace 3 . 15

2.8 Burst loss length distribution for trace 1 . 16

2.9 Burst loss length distribution for trace 2 . 16

2.10 Burst loss length distribution for trace 3 . 17

2.11 Cumulative distribution of delay increase from playout buffers for trace 1 18

2.12 Cumulative distribution of delay increase from playout buffers for trace 2 18

2.13 Cumulative distribution of delay increase from playout buffers for trace 3 19

2.14 RTT delay distribution, Columbia to U.Mass . 20

2.15 RTT delay distribution, Columbia to USC . 20

2.16 RTT delay distribution, Columbia to Germany 21

2.17 Evolution of RTT, Columbia to U. Mass . 21

2.18 Evolution of RTT, Columbia to USC . 22

2.19 Evolution of RTT, Columbia to Germany . 22

2.20 Cumulative distribution of resynchronization times 28

2.21 Cumulative distribution of avg. MSE . 30

xi

2.22 Mix1 and mix2 . 33

2.23 Preferences for mix1, mix2, or neither . 35

2.24 Piggybacking FEC packets for a (5, 3) Reed Solomon code 39

2.25 Performance of Adaptively Virtual Algorithms on Trace 2 58

2.26 Performance of Adaptively Virtual Algorithms on Trace 1 60

2.27 Performance of Adaptively Virtual Algorithms on Trace 3 61

2.28 Comparison of Loss and Delay Performance across All Algorithms 63

2.29 Performance of Algorithms in Achieving a Target Loss of 0.07 65

2.30 Performance of Algorithms in Achieving Varying Target Loss Probability 66

2.31 FEC packet structure . 71

2.32 Parity header format . 72

3.1 RTP fixed header format . 83

3.2 Current RTCP Algorithm . 87

3.3 Conditional Reconsideration . 102

3.4 Unconditional Reconsideration . 103

3.5 Network Model . 106

3.6 Learning curve, step join with N=10,000 . 107

3.7 Total packets sent, step join with N=10,000 . 107

3.8 Effect of delay distribution on transient for conditional reconsideration 109

3.9 Linear joins: conditional reconsideration . 110

3.10 Linear joins: unconditional reconsideration . 110

3.11 Computing Psend with reconsideration . 113

3.12 Experimental vs. Analytical Scheduled Rate Integral 116

3.13 Experimental vs. analytical learning curve . 118

3.14 L(t) vs.
∫
r(t) . 119

3.15 Transient with Conditional Reconsideration . 124

3.16 Transient with Unconditional Reconsideration 125

3.17 Steady State RTCP Packet Rate . 131

3.18 Oscillating Steady State RTCP Packet Rate . 134

xii

3.19 Coefficient of Variation of Packets Transmitted 135

3.20 BYE Reconsideration Performance . 140

3.21 Premature Timeout Problem . 141

3.22 Reverse Reconsideration Algorithm . 148

3.23 Group Size Estimate with Reverse Reconsideration 149

3.24 Comparison of SSRC Sampling Algorithms . 156

4.1 Typical SIP deployment . 170

4.2 Typical SIP INVITE message . 171

4.3 SDP message example . 176

4.4 gosSIP threading architecture . 181

4.5 gosSIP state machine architecture . 184

4.6 Example CPL+ script . 186

5.1 Architecture for TRIP . 220

5.2 Customer X uses gateway through bilateral provider relationships 221

5.3 Worst and best case topologies for indexed database query times 223

5.4 WASRV architecture . 227

5.5 SA state machine . 232

6.1 IN conceptual model . 247

6.2 Call flow for a phone call . 248

6.3 A usage in the DFC architecture . 255

6.4 Application component architecture . 260

6.5 Client interaction with dialog server for PIN collection 267

6.6 Message exchange for basic presence service 274

6.7 Call flow for interface to message component 275

6.8 Interface between the controller and session components 277

6.9 Signaling and media relationships in third party call control 278

6.10 3pcc basic flow . 279

6.11 3pcc advanced flow . 280

xiii

6.12 Hanging up with 3pcc . 282

6.13 Alternative to hangup . 282

6.14 3pcc where the end user initiates . 283

6.15 Using HTTP as a stimulus protocol . 287

6.16 Pre-Paid calling card service . 290

6.17 Click-to-dial service . 292

6.18 First half of auto-conference service . 294

6.19 Call establishment phase of auto-conference . 296

6.20 Call flow for web form entry for call center . 297

6.21 Bidirectional translation services for the hearing impaired 299

xiv

xv

Acknowledgments

First and foremost, Professor Henning Schulzrinne deserves recognition for his tremendous con-

tributions to this work, in addition to recognition for the immeasurable impact he has had on

my career and professional development. Professor Schulzrinne provided guidance, knowledge,

insight and direction whenever it was needed. He introduced me to many of the pioneers in the

Internet, giving me an opportunity to learn from them as well. He introduced me to the Internet

Engineering Task Force (IETF), a professional organization through which much of this work has

found a commercial outlet. I will be forever in his debt.

Several other individuals deserve special recognition for their impact on this thesis.

Lili Qiu deserves recognition as a key contributor of much of the work in transport chap-

ter. She prepared many of the simulations and the plots used in the section on playout buffer

integration. She was also responsible for the fine tuning of parameters that took place for many

of the algorithms. She contributed the idea of the previous optimal algorithm, and helped refine

the formulation for the analytical algorithm.

The taxonomy for feedback presented in the feedback section was the result of joint work

with Joerg Nonnenmacher and Markus Hoffman from Bell Laboratories. Daniel Rubenstein de-

serves complete credit for the proof of the steady-state unconditional reconsideration rate. The

initial concept of reconsideration (which we now call conditional reconsideration) was proposed

by Henning Schulzrinne. The original concept of SSRC sampling was proposed by Steve Casner.

Much of this work has been reviewed and commented on by members of the AVT working group

in IETF, and in particular, Steve Casner, Colin Perkins and Bill Fenner.

The work on generating requirements for the general service discovery problem was done

jointly with Erik Guttman from SUN Microsystems and Ryan Moats from AT&T Labs. Dave

Oran from Cisco deserves credit for first recognizing that the bilateral model is nearly identical to

the BGP4 model. Erik Guttman provided many comments on the WASRV protocol which made

their way into this thesis. Dina Katabi contributed many ideas and thoughts on performance for

WASRV.

Mark Handley (ACIRI), Henning Schulzrinne and Eve Schooler (Caltech) deserve recog-

nition for the initial work on SIP. Pete Mataga from dynamicsoft contributed to many of the ideas

on the component architecture for SIP, along with assistance in defining some of the combined

services presented here. Jon Peterson from Level(3) and Gonzalo Camarillo from Ericcson pro-

vided helpful and valuable input on third party call control.

The implementation of the ACA is ongoing work at dynamicsoft, where I am currently

employed. Many software engineers deserve credit for the long nights involved in realizing the

controller described in this dissertation, and development of applications using this architecture.

They include Peter Mataga, Prasad Sripathi, Edgar Villanueva, John Eichelsdorfer, Srinivas Ma-

ganti, Srinivas Dharmaji, Andrew McGrath, Kevin Grey, Ajay Deo, Kelvin Porter, Ed Gokhman,

Xin Feng, David Ladd, and Anders Kristensen. Additional thanks to Eric Burger from Snowshore

Networks, and Ed Yackey from Voyant, for their comments and support of this architecture.

Last but not least, I would like to thank my wife Michelle, and son Joshua, for providing

encouragement and understanding throughout my educational career.

xvi

This thesis is dedicated to Michelle and Joshua, for their support and understanding.

xvii

1

Chapter 1

Introduction

The problem of carrying voice on IP-based packet networks was first identified by Cohen et al.

[1] in 1977. Much of Cohen’s work, and the work that followed, focused on recovering from the

lower quality offered by packet networks (asynchronous delivery, high packet loss rates, high la-

tencies, substantial packet jitter) as compared to circuit-switched networks. Of particular interest

was recovery from packet jitter through the use of receiver jitter buffers, and loss compensation

techniques to handle packet loss. However, as usage of IP networks for multimedia delivery in-

creased, the community began to realize that the delivery of multimedia communications services

over IP networks was a much broader, and much more difficult problem.

The problem is more difficult because the actual transport of multimedia from point A

to point B is only a small piece of an overall multimedia communications service. Signaling

protocols are needed to establish and maintain calls. Features need to be defined and architected.

Multiparty conferences, ranging from three people to millions of people, need to be considered.

Interoperability with the legacy Public Switched Telephone Network (PSTN) needs to be con-

sidered. Quality must be provided, not just for the media itself, but for the service overall. All

of these, taken together, are needed to provide a complete Internet telephony service. As a re-

sult, we define Internet telephony service as the provision of real-time, interactive, multimedia

telecommunications services between human users, using the public Internet.

2

1.1 Components of an Internet Telephony Service

Many systems need to be designed and developed to provide a complete Internet telephony ser-

vice, as defined above. We can identify at least five that have been considered to date:

Transport: The system that carries voice and video between two points on an IP network. The

transport system is responsible for handling packet loss, packet jitter, and delay. On the

Internet, voice and video transport are provided by the Real-Time Transport Protocol (RTP)

[2].

Transport Control: The system that manages and controls the behavior of the transport algo-

rithms and protocols. It provides feedback to senders (and third parties) on the loss, delay,

and jitter being provided by the transport network. On the Internet, this is provided by the

Real Time Control Protocol (RTCP) [2].

Call Signaling: The system that sets up, tears down, and manages the multimedia calls which

make use of the underlying transport and transport control systems.

Applications: The system which provides Internet telephony features and applications to users.

Examples of these include call forwarding, transfer, conferencing, personal assistant, and

pre-paid calling cards. The application system makes extensive use of signaling protocols.

Resource Discovery: The system that allows for the discovery of network servers, such as gate-

ways, feature servers, bridges, and media servers, which are used by the signaling and

services system to provide call control and features.

Other components, such as management systems, are also important for Internet tele-

phony. However, we have chosen to focus on these five above, since we feel they represent the

core of an Internet telephony service.

In this thesis, we investigate the problems of providing a complete Internet telephony

service, focusing on the differences between IP networks and circuit switched networks, and

their implications on providing the service.

3

1.1.1 Organization

This dissertation is divided into five main chapters, with each focusing on problems in each of

the five components we describe above. Rather than reviewing existing literature up front, we

distribute the review in each chapter.

The first chapter, on transport, more clearly defines the implications of the Internet on

voice quality through measurements we have taken and analyzed. Our analysis focuses on the

voice quality observed by the user after recovery algorithms have been applied, and demon-

strates that media-unaware Forward Error Correction (FEC) has advantages over media-aware

FEC when used with low-rate codecs. After reviewing past work on addressing the quality prob-

lems, we identify a new problem introduced by an interaction between two existing mechanisms,

namely playout buffer adaptation and FEC. We analyze the problem and propose new classes of

playout buffer algorithms that take this interaction into account, and then demonstrate the im-

provement in performance they provide. We propose a new protocol for carrying FEC within

RTP, and we describe a novel algorithm that allows a receiver to utilize a large class of FEC

codes.

The second chapter considers transport control. It introduces three problems we have

discovered in the existing RTCP control mechanisms, which are congestion, state storage, and

delay. We examine the possible set of solutions proposed elsewhere in the literature, aided by a

taxonomy we developed for this purpose. We conclude that the ideal solution is one that provides

backwards compatible improvements to the existing RTCP mechanisms. We then propose a set of

new RTCP control algorithms called reconsideration, which can eliminate the RTCP congestion

problems. We develop analytical models for the reconsideration algorithms, and through these

models, demonstrate the existence of the congestion problem and the performance of our solu-

tions. We back up the analysis with simulations, using a simulator we constructed. To resolve

the state storage problems, we propose an algorithm for dynamic sampling which can reduce the

memory requirements of systems in large conferences, with little impact on performance. We

demonstrate these claims with simulations and analysis.

The third chapter considers signaling protocols for providing call establishment, call man-

agement, features, and applications. After an analysis of existing Internet telephony signaling

4

protocols, we propose a new protocol, the Session Initiation Protocol (SIP), which overcomes the

limitations of existing protocols. We describe an implementation of this protocol in software, and

discuss applications we have built with it.

The fourth chapter considers resource discovery. We define the problem of Internet tele-

phony gateway discovery, required for interconnection with the telephone network. We show that

this is a subset of a broader wide area service discovery problem. After reviewing existing pro-

tocols for resource discovery (and finding them lacking for wide area applications), we present a

scalable protocol for wide area service discovery, called the Wide Area Service Discovery Proto-

col which is ideal for discovery of gateways, amongst other resources.

The fifth chapter considers a service architecture for Internet telephony, which provides

features and complex applications to users. We define requirements of a service architecture

for Internet telephony, and then review the service architectures that have been presented in the

literature. We then propose our architecture, the Application Component Architecture (ACA),

which combines the best aspects of existing work. We show how this architecture can be used to

provide several complex applications.

The final chapter concludes and reviews our findings.

5

Chapter 2

Transport

2.1 Introduction

As we have mentioned in the introduction, the best effort delivery service offered by the Internet

results in highly variable packet delays, loss, and jitter [3, 4]. The packet loss probabilities and

packet delays are often beyond what is considered acceptable for good speech quality. The In-

ternational Telecommunications Union (ITU) has recommended one-way delays no greater than

150 ms for most applications [5], with a limit of 400 ms for acceptable voice communication.

Tolerable loss rates depend heavily on the speech codec in use [6], and can range from 0 to 10%

[7]. The implication is that the best effort Internet will not always be sufficient for high quality

voice.

There are two approaches that can be taken to combat this problem. The first is to provide

improved network layer performance. The Internet Engineering Task Force (IETF) has proposed

the Integrated Services architecture [8, 9] as one approach to the problem. Intserv, and its com-

panion signaling protocol, the Resource Reservation Protocol (RSVP) [10, 11], allow hosts to

request end-to-end QoS. Using the guaranteed service model, they can request a bounded delay

with zero loss. The controlled load model allows hosts to request service identical to an un-

loaded network, without specific numerical guarantees. However, scaling concerns (among other

difficulties) have led the IETF to consider a more lightweight approach to network QoS, called

differentiated services [12, 13, 14, 15].

6

The second approach for reducing loss and delay is through end-to-end adaptive mecha-

nisms. In this case, end systems measure the service being delivered by the network (using RTCP

[2]), and send additional information, and/or run additional algorithms, to improve voice qual-

ity. These mechanisms do not rely on explicit support from the network beyond normal packet

transport. It is for this reason they are considered end-to-end mechanisms.

Ideally, a well engineered, QoS-aware network would obviate the need for end-to-end

adaptation. However, the heterogeneous nature of the Internet leads us to conclude that it is

unlikely for any solution to be ubiquitously deployed any time soon. As such, end-to-end adaptive

mechanisms are, and will remain, critical for high quality voice.

One of the primary mechanisms used for end-to-end compensation for loss is Forward

Error Correction (FEC), both media-aware and media-unaware [16]. In this chapter, we consider

numerous issues that arise in the usage of FEC. In Section 2.2, we motivate the need for it through

measurements of Internet voice transport performance. Then, in Section 2.3, we review the ex-

isting schemes for forward error correction, and in Section 2.4 present a novel analysis which

demonstrates the superiority of media-unaware FEC for low bitrate codecs. We then consider a

number of critical issues that arise in deploying a system that uses FEC. First and foremost, we

demonstrate an important interaction between FEC and adaptive playout buffers, and in Section

2.5, develop a set of new playout buffer adaptation algorithms which are FEC-aware and demon-

strate their superior performance. Finally, we consider how to add FEC to the RTP [2] framework,

paying particular attention to supporting sender adaptation.

2.2 Internet Measurements

In order to determine the most appropriate mechanism for end-to-end recovery from packet loss,

it is necessary to understand the nature of that loss, and of packet delays.

2.2.1 Previous Work

There have been several studies undertaken to demonstrate the “performance” of the Internet,

focusing on metrics such as loss, delay, re-ordering, burstiness and correlation of losses.

7

The largest study to date was conducted by Paxson [3, 4]. His work used TCP to de-

termine network performance between 35 different pairs of hosts. His study, not surprisingly,

revealed substantial variation in most metrics. He observed variations based on time of day, ge-

ography, and year. He observed loss probabilities that ranged between 0% and 65%. Paxson

also found wide variability in the correlation of losses. From the set of traces collected during

November to December of 1995, he examined the distribution of outages, which are the duration

of time over which there is complete packet loss. He observed that 10% of the outages were less

than a few milliseconds, while another 10% were more than a few seconds! Similar variability is

observed for delays.

Mukherjee [17] found that end-to-end one way packet delays were well modeled using a

shifted gamma distribution, but the parameters of the distribution depended on the path and time

of day.

Several studies have been conducted to explore performance of real time media on the

Internet. The study by Bolot et al. [18] focused on a single link from INRIA in France to the

University of Maryland in the U.S. They found that there was substantial correlation in delays,

and demonstrated that this was due to their rapid probe packets piling up behind a large packet

in a congested buffer. This spike phenomenon was first observed by Mills [19] in 1983. Their

study of loss demonstrated correlated losses for packets sent close together. However, for packets

sent far apart (where far depends on the bandwidth of the bottleneck link), they found losses to

be independent.

Sanghi et al. [20] used UDP to determine the connection properties between a number

of hosts. They found that losses generally occurred one at a time, and they observed the spike

phenomena later confirmed by Bolot [18].

Yajnik and Kurose [21] examine the spatial and temporal correlation of losses for multi-

cast traffic in the Mbone. Their study consisted of 17 nodes on the Mbone, listening to a variety of

sessions. Their results showed that spatial correlation (where multiple participants lose the same

packet) was fairly low, and that backbone losses were low except for occasional periods of high

loss. Temporally, they found the majority of losses to be isolated. However, there were outliers

of very long bursts which were found to contribute heavily to the overall loss probability. These

8

results agree with those by Bolot et al. [18].

Yajnik et al. [22] examine the temporal dependence of packet loss for unicast traffic

collected over 128 hours. They find that for packets spaced greater than 1 second apart, losses

are uncorrelated. They also find that measuring packet loss over time by using sliding windows

over some past number of packets gives much better results than exponential weighted averages

of non-overlapping windows.

Handley [23] investigates Mbone performance through RTCP reports. His findings show

temporal variations in loss, with rates typically between 0 and 10%.

Maxemchuk and Lo [24] examine network performance for supporting Internet telephony.

They use UDP to collect data between several sites, and then apply a static playout buffer and loss

compensation to determine the loss rates seen by the application. They also define an objective

metric for quality based on the fraction of time the connection has no loss.

2.2.2 Measurement Approach

Our aim is to add to existing work through two main contributions. First, It is useful to take

occasional “snapshots” of Internet performance, obtaining new data between new sites. Our new

traces add to the overall amount of data available on Internet performance. Secondly, most of

the past work on measurements has not considered statistics that reflect end-to-end performance.

The focus has been on characterizing network behavior, and not on how the network behavior fits

into the overall application performance. It is our aim to fill this gap by considering the impact

on an important Internet telephony component, the adaptive playout buffer, on loss and delay.

Our system for measurements is similar to the one used by Yajnik et al. [22], and is

depicted in Figure 2.1. We developed two pieces of software - the station and the controller.

The station is based on the tracing tool used by Sanghi [20]. It is a daemon process capable of

sending UDP packets of arbitrary size, at arbitrary intervals, to a specified address and port. The

packets include an origination timestamp and sequence number. The station is also capable of

receiving packets on a specified port, logging the reception time and the origination timestamp

and sequence number of the packet. The station can optionally reflect the packet back to the

originator. The originator can log the reception time of the reflected packet, the timestamps and

9

Controller

TCP Control

UDP Data

Station

Station

Station

Station

Figure 2.1: Measurement setup

Station Number Station Location IP Address
1 GMD Fokus, Germany 193.175.132.184
2 Columbia University, NY, USA 128.59.19.141
3 U. Mass. Amherst, Amherst, MA, USA 128.119.40.203
4 U. California at Santa Cruz, USA 128.114.134.117

Table 2.1: Locations of stations

sequence number within the packet, to disk.

The controller is capable of configuring and starting the stations. It specifies the address,

port, packet size, packet interval, and measurement epoch used by the stations. One station

is configured to act as the sender, and the other as the receiver. The control is exercised over

permanent TCP connections established with each station. Once the station has been instructed

to start, it sends periodic keepalives to the controller, updating it with the total number of packets

sent and received to date. The controller has a simple shell, which allows commands to be entered

manually or through a script.

We placed stations at several sites throughout the world, shown in Table 2.1.

10

Trace # Sender Receiver Day Recv. Data? Sender Data?
1 Germany Columbia Univ. 9/23/97 Y N
2 USC Columbia Univ. 9/22/97 Y N
3 USC UMASS 9/23/97 Y N
4 Columbia Univ. UMass 9/19/97 N Y
5 Columbia Univ. USC 9/18/97 N Y
6 Columbia Univ. Germany 9/19/97 N Y

Table 2.2: Statistics of Traces

We collected data between six pairings of the above four sites. All of the data was col-

lected during the end of September in 1997. The stations were configured to send packets as if

they were generated from a G.723.1 [25] speech codec running at 6.3 kb/s over RTP [2], with a

single 30 ms frame is placed in each packet. The result is 24 bits of payload in addition to a 40

byte IP/UDP/RTP header. A packet was sent every 30 ms for a total duration of two hours. Due

to unfortunate limitations in computational access, we were not always able to obtain the trace

files generated at the sender and the receiver. Table 2.2 lists the traces that were collected. The

columns Recv. Data and Sender Data indicate whether the trace files were collected from the

receiver and sender, respectively.

The measurements we obtained reflect the performance of the network in delivering pack-

ets. To consider the actual performance that an Internet telephony application can expect to see,

we simulated the effects of a playout buffer. The playout buffer smooths out network jitter, at the

expense of additional delays. Packets which arrive too late are considered lost. The implication

is that a playout buffer increases both the loss and the delay seen by an application. In our sim-

ulation, the second adaptive algorithm described by Ramjee et al. [26] was used. This algorithm

adjusts the playout delay at the beginning of each talkspurt, so that the buffer depth represents the

4 times the standard deviation about the mean packet delays. The algorithm also handles spikes

of delay, by increasing the playout delays more rapidly as network delays increase, and reducing

the playout delays slowly as they decrease. Since our trace data did not contain silence periods,

we adjusted the playout delays based on simulated talkspurts. We used the on-off Markov model

for speech described by Brady [27] to generate a sample path of talkspurts and silence periods.

11

When the beginning of a talkspurt was encountered in the sample path, the playout delay was

adjusted according to the algorithm.

The playout buffer can effectively be seen as a filter on the raw trace data. Packets which

arrived after their scheduled playout time are removed from the trace, and the receive times are

modified to instead reflect their playout times.

We only considered the addition of a playout buffer on those traces where data was col-

lected at the receiver (traces 1, 2, and 3). This is because playout buffer adaptation is normally

performed at the receiver of a media stream.

2.2.3 Results for Receivers

For traces 1, 2 and 3, we computed a number of traditional loss metrics, both on the raw data, and

on the data filtered with the playout buffer. The metrics we computed were:

Windowed Loss Probability We broke the trace into N non-overlapping windows, and com-

puted the fraction of packets lost in the window. The result is an estimate of the loss

probability.

Conditional Loss Probability (CLP) We computed the probability the ith packet is lost, given

that the (i− n)th packet was lost.

Burst Length Distribution We computed a histogram of the number of consecutive packets lost.

The use of playout buffers also increases the overall delays seen by the application. For

each packet that arrived in time for playout, we computed the difference between its playout time

and arrival time. We then computed the distribution of this difference.

Figures 2.2, 2.3, and 2.4 show the mean loss probability for traces 1, 2, and 3, respectively.

Each figure contains two lines, one representing the loss probability of the raw trace, and the other

representing the loss probability of the trace after the playout buffer has been applied. All traces

show substantial variability. Trace 2 is particularly interesting. It shows three distinct regions of

loss, the region from sequence numbers 0 to 100,000, which show a loss probability of around

8%, a small region around sequence number 20,000 which shows a complete outage where all

12

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 50000 100000 150000 200000 250000

P
ro

ba
bi

lit
y

Seq. No.

Average Loss Sample Path, GMD Fokus to Columbia U.

Infinite Playout
Adaptive Playout

Figure 2.2: Mean loss probability for trace 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50000 100000 150000 200000 250000 300000 350000 400000

P
ro

ba
bi

lit
y

Seq. No.

Average Loss Sample Path, USC to Columbia U.

Infinite Playout
Adaptive Playout

Figure 2.3: Mean loss probability for trace 2

13

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50000 100000 150000 200000 250000

P
ro

ba
bi

lit
y

Seq. No.

Average Loss Sample Path, USC to U.Mass

Infinite Playout
Adaptive Playout

Figure 2.4: Mean loss probability for trace 3

packets are lost, and the region from sequence number 100,000 until the end of the trace, with a

loss probability of around 12%. In all three figures, the curves for the raw and playout buffered

traces are very close. This means that the playout buffer algorithm is fairly conservative, resulting

in little additional packet loss due to playout buffer underrun.

Figures 2.5, 2.6 and 2.7 show the conditional loss probability vs. the lag k for traces 1,

2, and 3, respectively. Each plot shows the conditional loss probability for the raw and “filtered”

data (by filtered, we mean that the playout buffer has been applied). They also show the mean

loss probability for the raw and unfiltered data. These plots consistently reveal several interesting

properties. First, the conditional loss probability for small lags is extremely high. The CLP

eventually trails off, approaching the mean loss probability only for substantially long lags. This

clearly indicates that packet losses are not independent, as postulated by Bolot [18]. Figures

2.5 and 2.6 also show another interesting feature. The mean loss probabilities between the raw

and playout filtered traces are quite close (the flat lines on the bottom which represent the two

mean loss probabilities are nearly on top of each other). However, the CLP for small lags is

significantly higher as a result of playout buffer adaptation. The effect is present in trace 3, but is

14

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 5 10 15 20 25 30 35 40 45 50

p(
lo

st
 x

+
k

| x
 lo

st
)

k

Conditional Loss comparison, GMD Fokus to Columbia U.

Infinite Playout
Adaptive Playout

Infinite Playout, Mean
Adaptive Mean

Figure 2.5: Conditional loss probability for trace 1

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0 5 10 15 20 25 30 35 40 45 50

p(
lo

st
 x

+
k

| x
 lo

st
)

k

Conditional Loss comparison, USC to Columbia U.

Infinite Playout
Adaptive Playout

Infinite Playout, Mean
Adaptive Mean

Figure 2.6: Conditional loss probability for trace 2

15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 5 10 15 20 25 30 35 40 45 50

p(
lo

st
 x

+
k

| x
 lo

st
)

k

Conditional Loss comparison, USC to U.Mass

Infinite Playout
Adaptive Playout

Infinite Playout, Mean
Adaptive Mean

Figure 2.7: Conditional loss probability for trace 3

much less pronounced. We believe this is attributable to the much higher jitter in the trace, which

causes overly conservative playout buffer sizing. The conclusion, however, is that the playout

buffer algorithm is not affecting the mean loss probabilities, but is having a significant effect on

its correlation structure.

The effect can be further examined through the burst length distributions, which are

shown in Figures 2.8, 2.9 and 2.10. The probability of each burst length is shown on a loga-

rithmic scale. Each figure shows two curves, one for the raw data, and the other for the data

filtered through the playout buffer algorithm. The plots show a linear decrease (on a logarithmic

scale) of burst length probability as the length increases to around five or ten. This would in-

dicate an exponential decrease in actual probability. However, the rate of decrease slows down

for very large burst lengths, of which there are a significant number. This indicates that packet

losses are usually independent, with the exception of occasional very long bursts of consecutive

losses. These long bursts account for the abnormally high conditional loss probabilities. These

figures also illustrate more clearly the effect of the playout buffers. The playout buffers have little

impact on the frequency of small burst lengths, but seem to significantly increase the frequency of

16

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35

F
re

qu
en

cy

Consecutive Losses

Burst Loss comparison, GMD Fokus to Columbia U.

Infinite Playout
Adaptive Playout

Figure 2.8: Burst loss length distribution for trace 1

1e-05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Consecutive Losses

Burst Loss comparison, USC to Columbia U.

Infinite Playout
Adaptive Playout

Figure 2.9: Burst loss length distribution for trace 2

17

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25 30 35

F
re

qu
en

cy

Consecutive Losses

Burst Loss comparison, USC to U.Mass

Infinite Playout
Adaptive Playout

Figure 2.10: Burst loss length distribution for trace 3

very long burst lengths. This means that the playout buffers seldom result in the loss of isolated

packets; rather, they cause long bursts of consistently late packets to be lost.

The playout buffer increases both the packet loss rates, and the packet delays. This in-

crease is show in Figures 2.11, 2.12 and 2.13 for traces 1, 2 and 3, respectively. The figures

show the cumulative distribution of the increase in packet delay as a result of the playout buffer

algorithms. The results show a nice, smooth distribution of delay increase. The mean increase

for trace 1 is around 60 ms, for trace 2 around 70 ms, and for trace 3, 300 ms. The large increase

in delay for trace 3 explains the smaller effect the playout buffer has on the loss probabilities.

2.2.4 Results for Senders

For traces 4, 5 and 6, only round trip information was obtained. The round trip time (RTT)

measurements include losses from both sender to receiver, and receiver back to sender. Paxson’s

study [4] found loss probabilities to be asymmetric. The result is that it is difficult to glean useful

network loss information from the round trip measurements. Since we do not have one way delay

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

C
um

ul
at

iv
e

F
re

qu
en

cy

Delay (s)

Distribution of Increase in delays from playout buffer, GMD Fokus to Columbia U.

Frequency

Figure 2.11: Cumulative distribution of delay increase from playout buffers for trace 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25

C
um

ul
at

iv
e

F
re

qu
en

cy

Delay (s)

Distribution of Increase in delays from playout buffer, USC to Columbia U.

Frequency

Figure 2.12: Cumulative distribution of delay increase from playout buffers for trace 2

19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

C
um

ul
at

iv
e

F
re

qu
en

cy

Delay (s)

Distribution of Increase in delays from playout buffer, USC to U.Mass

Frequency

Figure 2.13: Cumulative distribution of delay increase from playout buffers for trace 3

information, the impact of playout buffers on application performance cannot be determined ei-

ther. However, the round trip information is very useful for examining round trip delay estimates.

Traces 2.14, 2.15 and 2.16 show the cumulative distribution of the round trip time for

Columbia U. to U. Mass, Columbia U. to USC, and Columbia U. to GMD Fokus, respectively.

The traces within the United States show a fairly smooth distribution over a wide range, with

an almost linear increase in the middle of the range of values. This is in sharp contrast to the

distribution from Columbia to Germany, which indicates that the RTT’s were within a narrow

window of values, roughly 120 to 135 ms.

The plots of the mean RTT over time (measured in 1024 non-overlapping windows) show

similar trends. These plots are show in Figures 2.17, 2.18 and 2.19 for traces 4, 5 and 6, respec-

tively. The RTT for the traces within the United States shows a fairly random variation. However,

the RTT for trace 6 shows distinct regions of behavior. From time 0 to 20,000, the mean RTT

stays around 123 ms, and then jumps up slightly to around 127 ms, where it stays until around

time 325,000, where it seems to drop once more. During this time, there appear to be occasional

bursts of extremely large RTT’s. One at time 140,000 shows an average RTT of a little over

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Time (s)

RTT Distribution, Columbia U. to U.Mass

RTT

Figure 2.14: RTT delay distribution, Columbia to U.Mass

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Time (s)

RTT Distribution, Columbia U. to USC

RTT

Figure 2.15: RTT delay distribution, Columbia to USC

21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Time (s)

RTT Distribution, Columbia U. to GMD Fokus

RTT

Figure 2.16: RTT delay distribution, Columbia to Germany

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 50000 100000 150000 200000 250000 300000 350000 400000

D
el

ay
 (

s)

Time (s)

Mean RTT over Time, Columbia U. to U.Mass

Avg. RTT
RTT over time

Figure 2.17: Evolution of RTT, Columbia to U. Mass

22

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 50000 100000 150000 200000 250000 300000 350000 400000

D
el

ay
 (

s)

Time (s)

Mean RTT over Time, Columbia U. to USC

Avg. RTT
RTT over time

Figure 2.18: Evolution of RTT, Columbia to USC

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0 50000 100000 150000 200000 250000 300000 350000 400000

D
el

ay
 (

s)

Time (s)

Mean RTT over Time, Columbia U. to GMD Fokus

Avg. RTT
RTT over time

Figure 2.19: Evolution of RTT, Columbia to Germany

23

160 ms, and another at time 320,000 shows an average RTT of almost 300 ms, almost three times

the average RTT for the entire trace!

2.2.5 Conclusions

Care must be taken in drawing conclusions from Internet packet traces; the only certainty is that

the network characteristics vary tremendously from hour to hour, day to day, and from link to

link. However, our measurements did provide some insight into the kind of behaviors we might

see.

The receiver results seem to indicate that correlated losses can, and do, occur regularly.

However, the traces consistently indicate that the correlations arise due to large bursts of consec-

utively lost packets. Furthermore, the impact of the playout buffers seem to be to increase the

number and length of these bursts as seen by the application. Unfortunately, it is nearly impossi-

ble to compensate for such long bursts of length in a way that meets the real time requirements of

Internet telephony. However, handling the large number of uncorrelated losses is possible through

FEC techniques, and it is these techniques that we explore in the remainder of this chapter.

2.3 Review of Existing Recovery Mechanisms

A wide variety of tools have been used to compensate for network losses. Excellent surveys can

be found by Perkins and Carle [28, 29, 16]. The basic approaches these surveys describe include:

Local Repair: When a packet is lost, the receiver attempts to fill in the missing information

through some kind of interpolation. This does not depend on any additional information

being sent from the transmitter. Many speech codecs include specifications on how to

accomplish this [30, 25]. However, studies have shown that these mechanisms do not work

well for unvoiced speech [6], and they still result in de-synchronization of the encoder and

decoder for frame-based codecs, as we demonstrate in Section 2.4.1.

Redundant Encodings: In this approach, each packet contains a lower-fidelity encoding of pre-

vious packets. This is shown in Figure 2.24. If a packet is lost, the receiver can use the

lower fidelity version in a later packet to fill in the missing voice data [31, 32, 33, 34]. This

24

lower fidelity version requires fewer bits to represent than the original, thus reducing band-

width consumption. The approach is dependent on detailed knowledge of the media being

transported. It is this “layer violation” which allows the redundant encodings approach

to be efficient. This mechanism is part of a general class of FEC mechanisms which are

media-aware. Another example of a media-aware mechanism is the transmission of redun-

dant information only during speech segments where local repair will not work well. This

is the approach adopted with Speech Property based FEC (SP-FEC), proposed by Sanneck

[6].

Packet FEC: In this approach, traditional channel codes (such as parity and Reed-Solomon

codes) are applied across packets. The result are additional FEC packets which can be

used to exactly recover missing data packets. This approach has been proposed for voice

recovery and for reliable multicast [35, 36, 37, 38, 39, 40]. It has the advantage of per-

fectly recovering the missing data, independent of whether the media was speech, video,

or interactive chat. It is for this reason that packet FEC is also known as media-unaware

FEC.

Interleaving: In this approach, the bursty nature of packet loss is mitigated by spreading the

codec data over multiple packets. The technique has been known for a long time [41],

and has been recently applied for media on the Internet [42]. Interleaving, while simple to

implement, results in significant increases in packetization delay at the sender.

Retransmission: Packet losses can be mitigated by requesting retransmission of missing pack-

ets. The latencies this approach introduces often make it prohibitive for real time media,

but some studies have shown it feasible when the jitter is substantial compared to the net-

work latency, because of the delay introduced by playout buffers [43, 44]. However, its

limited applicability makes it unsuitable as a general solution.

Both the media-aware and media unaware recovery approaches increase delay. Since the

redundant information is sent after the original, the receiver must wait for it to arrive. The amount

of time to wait depends on many factors, which we consider in detail in Section 2.5.

25

2.4 Media Aware vs. Media Unaware Recovery

Media aware FEC is advantageous in that it can be very efficient. Since it uses knowledge about

the data being protected, it can use few bits for the redundant information. However, it has

numerous drawbacks.

The first drawback is computational. To support redundant codecs, the sender must ef-

fectively support multiple, parallel speech codecs. The codecs used for the redundant data are

typically low bitrate. Unfortunately, as a general rule, the lower the bitrate, the more computation-

ally complex the encoder. The result is that the media-aware mechanisms can be computationally

complex. Media-unaware mechanisms are generally simpler; the use of simple XOR-based parity

codes requires almost no computation.

Secondly, when lost packets are recovered with the redundant encodings scheme, the re-

constructed data is at a lower fidelity. When packet losses are moderate, this means the recovered

audio stream will be alternately constructed from a high and low quality codec. This alternation

itself can be distracting.

Finally, the redundant encodings approach is able to successfully recover the content of

the speech corresponding to a missing packet. However, the quality of reconstructed speech for

subsequent frames (even though the packets are received) may be adversely affected. This is

because almost all modern speech codecs (including G.729 and G.723, which are widely used

for Internet telephony) maintain state in the decoder. The information received from the encoder

causes speech to be generated, and also updates the decoder state machine. The encoder maintains

the same state machine; this allows it to send data that can be decoded given the current state of the

decoder state machine. The redundant encodings mechanism allows the speech content of a lost

packet to be recovered, but it does nothing to help update the state of the decoder state machine.

As far as the decoder state machine is concerned, the packet has still been lost. The resulting

de-synchronization of the encoder and decoder will cause speech quality for subsequent frames

to worsen. The state machines will eventually reconverge; these codecs are generally engineered

with finite memories, so that old data becomes irrelevant for correctly reconstructing the current

frame. Additionally, many of these codecs have built-in mechanisms for estimating the missing

input when a packet is lost. This helps mitigate the effect on the decoder state machine, but does

26

not prevent it. This is in contrast to media-unaware FEC. Since the contents of the lost packet

are reconstructed verbatim, they can still be used to drive the decoder state machine. As a result,

there is no loss of synchronization, and subsequent speech is reconstructed correctly.

This last point, however, is rather subjective. The difference in recovery performance

between media aware and media unaware FEC will depend on a number of factors. In particular,

it depends on the amount of time the decoder requires to resynchronize, and on the impact of the

loss of synchronization on the reconstructed speech quality. These factors, in turn, depend on the

type of loss (isolated vs. bursty), the specific speech codec, and the content of the speech itself.

It is our aim in this section to quantify the difference between media-aware and media-unaware

recovery.

2.4.1 Resynchronization Time

The first step in quantifying the difference in performance is to consider the amount of time

required for the encoder and decoder state machines to resynchronize. If this time is negligible,

then the synchronization effect is not significant.

Determining the resynchronization time is nontrivial. A number of possible definitions

exist:

• Compute the difference between the decoded speech with no frame erasures, and the de-

coded speech with erasures. After an erasure occurs, compute the amount of time until the

energy in the difference falls below some threshold. The threshold can either be static or

adaptive according to the strength of the error signal. This approach is the simplest, requir-

ing no interaction with the encoder or decoder except through the decoder output. Since

Mean Square Error (MSE) is a poor estimate of speech quality except when it is very small

or very large, it likely defines an upper bound on the real convergence time, whatever that

may be.

• Use the same approach as above, but instead of a plain difference signal, use a perceptually

weighted error signal. G.729 defines a perceptual weighting filter which is derived from the

LP synthesis filter, and this can be used directly. This approach requires interaction with

27

the encoder (or decoder) to obtain the LP filter parameters. However, it yields a realistic

measure of the human perception of the convergence time.

• Instead of computing the error between the decoded speech, the decoder state can be con-

sider as a multidimensional vector, and a distance measure can be defined (perhaps percep-

tually) to compute the difference between the encoder and decoder state over time. This

approach has the advantage of actually looking at the state, and not the output of that state

(i.e., the decoded speech). However, it requires interaction between encoder and decoder,

and it necessitates the definition of a complex distance metric.

• Use either the first or second option, but with the postfilter turned off. Since the postfilter

does not represent decoder state (at least, state that must be synchronized with the encoder),

it may get in the way of measurements based on the speech itself.

The approach used here is the first one above. It is the simplest, and it gives an upper

bound on the real convergence time. We used an adaptive threshold to determine convergence. A

simple, one-pass algorithm was used to compute the convergence time. The MSE in each frame

(the MSE is measured between the decoded version of the unerrored speech bitstream and the

decoded version of the errored bitstream. This eliminates coding loss from the computation.) is

computed. The starting time of the convergence period is defined as the first good frame received

after a burst of erased frames. As subsequent frames are received, the maximum MSE so far

is noted, and the threshold is set at 1% of this quantity. The first frame with an MSE below this

threshold is considered the last frame of the convergence period. The difference in frame numbers

represents the convergence time, measured in units of frames.

The specifics of the experiment are as follows. The process starts out with an original

speech segment. The G.729 encoder is then run on the speech to generate the bitstream, with no

errors. A program then erases n consecutive frames from this bitstream, waits m frames, and

then erases n more. The process continues through the entire bitstream. In all our experiments,

m was set to a large number (50), corresponding to 500 ms, to avoid interactions between bursts.

The errored bitstream and the original, uncorrupted bitstream are then decoded. The result are

two speech segments. The MSE signal between the two is then computed, and the convergence

28

estimation technique above is applied.

The experiments were conducted using some of the speech files in the ITU corpus. In

particular, the speech segments f15.d, f17.d, f26.d, f34.d, f43.d, f44.d, m19.d, m27.d, m31.d,

m33.d, m41.d, and m51.d were used. The files beginning with f are female speakers, and the

ones beginning with m are male speakers. Each speech segment is approximately 2 to 8 seconds

in duration, with varying content and background noise. Each of these files contains 16 bit signed

linear Pulse Code Modulated (PCM) speech samples at 8 kHz.

Figure 2.20 shows the cumulative distribution of convergence times across all speech

segments. As the figure shows, this distribution does not appear to depend strongly on the burst

length of the losses.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Frames (10ms each)

Cumulative Distribution of Resynchronizatio Times

Burst Length 1
Burst Length 5
Burst Length 2
Burst Length 3
Burst Length 4

Figure 2.20: Cumulative distribution of resynchronization times

Table 2.3 summarizes this figure, showing the mean and standard deviation of conver-

gence times.

The substantial variation in the convergence times attests to the fact that they are ex-

tremely speech dependent. Given that frame sizes are 10 ms, the average convergence time is

between 70 ms and 100 ms, but they can be as large as 200 to 300 ms. This is not an insignificant

29

Burst Size Mean Resync. Time Std. Dev. of Resync. Time
1 10.26 7.92
2 8.21 6.51
3 8.22 7.39
4 7.27 6.93
5 9.25 9.39

Table 2.3: Resynchronization Time vs. Burst Length

duration, and therefore the resynchronization effect may be significant in comparing the perfor-

mance of media-aware and media-unaware FEC. Recent results by Sanneck have confirmed our

findings on the typical durations for the codec resynchronization [45].

2.4.2 Magnitude of Error

The previous subsection examined the duration of the de-synchronization. Equally important in

gauging its impact on quality is the magnitude of the effect. In this section, we consider, using

both objective and subjective metrics, the degradation of speech quality due to the loss of a burst

of n frames.

2.4.2.1 Objective Measurements

In this study, the speech quality is measured using the average MSE over the convergence period,

as defined above. It is well known that the MSE is not a true measure of speech quality. However,

it can serve as a useful bound, and coupled with the subjective measurements below, can help

give a reasonable estimate of speech quality.

Figure 2.21 plots the cumulative distribution of the MSE in each frame, for burst lengths

of 1 to 5. Note that in this case, there is a noticeable increase in the error energies with increasing

burst sizes.

These observations are verified by the computation of the average and standard deviation

of the energy in the entire error signal for the five different burst sizes. The results are depicted

in Table 2.4.

30

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07 3.5e+07

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

MSE

Cumulative Distribution of Avg. MSE

Burst Length 1
Burst Length 5
Burst Length 2
Burst Length 3
Burst Length 4

Figure 2.21: Cumulative distribution of avg. MSE

Burst Size Avg. MSE Std. Dev. MSE
1 1.4 · 106 2.9 · 106

2 2.3 · 106 3.6 · 106

3 2.6 · 106 4.1 · 106

4 2.6 · 106 4.5 · 106

5 2.7 · 106 5.0 · 106

Table 2.4: MSE vs. Burst Length

The results indicate a sharp jump in the error energy when the burst size increases from

1 to 2. Subsequent increases in the burst sizes cause further increases in the MSE, but by less

severe amounts. The variability in the error also appears to increase with increasing burst size.

The conclusion would appear to be that the codecs concealment algorithm can do a good job at

recovery for isolated packet losses, but does worse as the size of the burst increases.

31

Burst Size 1 2 3 4 5
Mean MOS 4.208333 3.275 2.425 2.0833 1.7

S.D. in MOS 0.660124 0.916629 1.198697 1.426437 1.585875

Table 2.5: Subjective Evaluation of Speech Quality

2.4.2.2 Subjective Measurements

The numerical results of the previous section were backed up by subjective testing. To perform

the test, 12 non-experts listened to a set of speech samples. The speech samples consisted of six

versions of the same speech: the decoded speech with no errors in the bitstream, and the decoded

speech with instances of 1, 2, 3, 4, and 5 consecutive frame erasures, spaced 500 ms apart. Using

the error-free decoded speech as an ideal point, the subjects were asked to rate the five other

samples on a scale of 1 to 5, with 5 being as good as the error free decoded signal, and 1 being

much worse. This scale is known as the Mean Opinion Score (MOS). The test was run using the

sequence f15.d, which is a female voice speaking a sentence roughly seven seconds in duration.

The subject evaluated each pair of speech signals (unerrored and errored) independently. Each

subject wore headphones to eliminate room noise. The pairs were evaluated in random order. The

results of the analysis are depicted in Table 2.5.

The table shows trends similar to those in the objective measures. With a single frame

erasure, the speech quality is slightly worse, but still very good. However, there is a sharp drop

in the speech quality as soon as two consecutive frame erasures occur. Subsequent increases in

the burst size reduce the speech quality more, but by decreasing amounts. Of course, there are

two phenomenon taking effect here. The first is quality degradation due to increased resynchro-

nization times of encoder and decoder. The second is reduced speech quality due to the loss of

an increasing number of consecutive packets.

The conclusion from the objective and subjective measurements is that the speech quality

in the absence of FEC of any sort (just using the G.729 concealment algorithm) is acceptable for

recovery from a single loss. However, the quality worsens with multiple losses. Our measure-

ments above have shown that multiple consecutive losses are quite common; this would imply

32

that FEC is useful in many cases.

2.4.3 Contribution of Resynchronization

The measurements of the previous section reveal that speech quality is adversely affected by

loss, particularly with two of more consecutively lost packets. However, the results say nothing

about whether this quality degradation is due to poor performance of the G.729 loss concealment

algorithm applied for the missing frames, or whether it is due to incorrect speech generated for

subsequent frames due to the state resynchronization problem. In this section, we perform an

experiment to determine which is the case.

To make such a determination, two speech signals were generated. The first one is the

output of the decoder with no frame erasures. The second is the output of the decoder with

instances of consecutively erased frames. Let’s say frames N and N + 1 only were erased. Two

new speech signals, called mix1 and mix2, are then generated. The signal mix1 is formed by

replacing frames N and N + 1 in the error-free decoder output with frames N and N + 1 from

the errored decoder output. The signal mix2 is formed by replacing frames N and N + 1 in the

errored output signal with the correct Nth andN+1th frames from the error-free decoder output.

In this fashion, mix1 emulates the decoder operation during the erased frames, but as soon as the

next good frame arrives, its output is perfect again, as it would be if its state were restored. On

the other hand, mix2 has correct speech output during the erased frames, as if the speech were

replaced by the correct version. However, the state is not restored, since the next good frame will

be generated from state updated from the concealment algorithm. The nature of these two speech

signals is depicted graphically in Figure 2.22.

Mix1 is representative of a system that allows for recovery of decoder state, at the ex-

pense of perfectly recovering the lost speech frames. Mix2 is representative of a system that

allows for recovery of the lost speech frames, at the expense of losing decoder and encoder state

synchronization. Media-unaware FEC is similar to the system represented by mix1, except that

it will typically also recover the lost speech frames. Media-aware FEC is similar to the system

represented by mix2, except it usually does not recover the lost speech frames perfectly, since a

lower fidelity codec is used.

33

Erase Erase

Erase Erase

State Loss State Loss State Loss State Loss

State Loss State Loss State Loss State Loss

Decoded Speech

Decoded Speech
with Frame Erasures

Mix1

Mix2

Figure 2.22: Mix1 and mix2

Burst Size Mix1 Mix2
Avg. MSE SD of MSE Avg. MSE SD of MSE

1 1.8 · 106 4.5 · 106 1.1 · 106 2.4 · 106

2 2.8 · 106 4.9 · 106 1.6 · 106 2.9 · 106

3 3.0 · 106 4.8 · 106 1.6 · 106 3.1 · 106

4 3.5 · 106 6.3 · 106 1.2 · 106 2.2 · 106

5 3.5 · 106 7.2 · 106 1.0 · 105 1.6 · 106

Table 2.6: Avg. and SD of MSE for mix1 and mix2

By comparing the speech quality of mix1 and mix2, we can gauge the impact of state

resynchronization on speech quality.

2.4.3.1 Objective Comparison

We first perform an objective comparison of the two speech signals. We do this using the average

MSE over the duration of the convergence time. For mix1, this duration is exactly equal to the

number of consecutive frames lost. For mix2, it is the amount of time required to resynchronize,

minus the duration of the loss itself.

The results are shown in tabular form in Table 2.6. Mix1 has a larger energy in its error

signal, although the duration of the error is much reduced. Mix2 has less energy in its error signal,

but the error persists for longer.

To determine which is actually better, we performed some subjective tests.

34

2.4.3.2 Subjective Tests

In the subjective evaluation, each of the 12 subjects listened to a number of pairs of speech

signals. Each pair was the same content, but one was the mix1 version (state restoration), and the

other was the mix2 version (speech restoration). Thirteen pairs of speech signals were presented;

1 pair (f15.d) contained instances of single frame erasures. The remaining twelve consisted of

the speech signals f15.d, f26.d, and m29.d, with 2, 3, 4 and 5 frame erasures each, with 500 ms

between each episode of erasures. For each pair, the subject selected which one sounded better,

or chose neither if they sounded the same.

The results are depicted in Figure 2.23. For each speech sample used, the number of sub-

jects who preferred mix1, mix2, or neither is indicated. The area below the mix1 line indicates

the number of subjects preferring mix1. The area between the mix2 line and the mix1 line indi-

cates the number of subjects preferring mix2. The area between the top of the chart and the mix2

line indicates the number of subjects with no preference. As the results show, mix1 was preferred

more than mix2 for all but two of the twelve speech samples. For the f15.d speech segment (the

longest of the three segments), the subjects almost unanimously chose mix1.

The conclusion is that the resynchronization effect is substantial. Users generally pre-

ferred the scheme which restored the state of the encoder and decoder, at the expense of reduced

speech quality during packet losses. This implies that media-unaware FEC is preferable for these

low rate codecs over media-aware FEC.

2.5 Integrating FEC with Playout Buffers

The results of the previous sections have demonstrated the importance of playout buffers on

application performance, and also have demonstrated the need for media-unaware FEC to combat

loss. In this section, we consider the interplay between adaptive playout buffer algorithms and

FEC.

The study of FEC for loss recovery, and playout buffer adaptation for jitter compensation,

have proceeded independently. However, we have observed that there is a coupling between the

two. All of the FEC mechanisms send some redundant information which is based on previously

35

0

2

4

6

8

10

12

f15_1 f15_2 f26_2 m29_2 f15_3 f26_3 m29_3 f15_4 f26_4 m29_4 f15_5 f26_5 m29_5

N
um

be
r

Audio Sequence

Subjective Measurements: Mix1 vs. Mix2

Neither
Mix 2
Mix1

Figure 2.23: Preferences for mix1, mix2, or neither

transmitted packets. Waiting for the redundant information results in a delay penalty, and conse-

quently an increase in size of the playout buffers. When network loss rates are high, accepting

the delay penalty for increased recovery capabilities is appropriate. However, when network loss

rates are low, the FEC may not provide useful information, and increasing the playout buffer siz-

ing to wait for it is not appropriate. The result is that playout buffer adaptation should depend

on both FEC and network loss conditions and network jitter. However, existing tools that utilize

FEC (such as rat from UCL and freephone from INRIA) use decoupled adaptation algorithms.

These algorithms compute a playout delay, using traditional algorithms, as if FEC were absent,

take the fixed delay required to reconstruct missing packets at the decoder using FEC, and then

combine these two delays together. These decoupled algorithms may insert insufficient delay

when network loss probabilities are substantial, and too much delay when they are not, resulting

in poor performance [46]. We further observe that existing playout buffer adaptation algorithms

generally aim to minimize the network losses at the expense of delay. However, speech quality

can still be good in the face of moderate packet loss. Based on the subjective results in Section

2.4.2.2, MOS scores were still excellent for the case of isolated packet losses. In that sample, the

36

loss rate was 2%. As such, it would be beneficial to be able to tune these algorithms to achieve a

target loss (possibly non-zero) to meet the operating range of the codecs, allowing for a reduction

in delays.

In this section, we explore these problems in more detail. In Section 2.5.1 we demon-

strate, through simple analysis, the need for coupling packet loss and jitter into playout buffer

adaptation. In Section 2.5.2 we briefly review some existing playout buffer adaptation algorithms.

In Section 2.5.3, we present several new algorithms which achieve the desired coupling and tun-

ability objectives. Section 2.5.4 shows the improvements offered by our algorithms through sim-

ulations. Section 2.7 summarizes our work and discusses future directions.

2.5.1 The Coupling Effect

The main role of playout buffer adaptation algorithms is to trade loss for delay. These algorithms

choose a playout delayD for each talkspurt, whereD is defined as the difference between playout

time and generation time for all packets in a talkspurt (although some algorithms adjust the delay

mid-talkspurt to compensate for errors in buffer sizing). Increasing D results in a larger end-to-

end delay, but decreases the fraction of late packets. The algorithms work by choosing a target

“optimal” operating point of loss and delay, and adjusting the playout delay to come as close to the

optimal point as possible. If an algorithm chooses some delay D for a talkspurt, the probability

receiving it on time and playing it out to the application (which we denote the playout probability

pR) is:

pR = (1− p)P [ni < D] (2.1)

where p is the loss probability for a packet, and ni is the delay of the packet (measured as the

difference between arrival time and generation time), given the packet arrives. We use the expres-

sion P [X] to denote the probability of event X. This expression assumes that the network losses

and delays are independent random variables. Of course, network losses are not independent.

However, as we noted in Section 2.2.5, we observed that packet losses are frequently indepen-

dent, with occasional bursts of highly correlated loss. Handling the latter is extremely difficult,

so we focus on dealing with the uncorrelated losses using FEC. As such, it is sufficient for our

analysis to focus on models that apply to the phenomena we are trying to correct - independent

37

packet loss.

The dependency of the playout probability pR on the network loss probabilities and the

network delay distribution is a simple multiplicative one. The result is that many playout adap-

tation strategies can completely ignore the loss rate p. In particular, any algorithm which tries

to choose the minimum D which achieves the highest possible pR need not consider p at all.

These algorithms need only find the smallest D for which P [ni < D] = 1. All of the algorithms

described by Ramjee and Moon [26, 47] fall into this category.

The dependency of pR on the delay distribution and loss probabilities becomes more

complex when FEC is introduced. The result is that the choice of D is more strongly influenced

by p. In the subsections which follow, we derive expressions for the relationship of pR to the

delay and loss, and show how the more complex interrelationships increase the importance of

considering loss in adaptation algorithms.

2.5.1.1 Redundant Codecs

Consider the FEC mechanisms described by Bolot and Garcia [32]. These algorithms use multiple

low-bitrate versions of a packet, each version being piggybacked on a subsequent packet. A

packet is played out so long as a receiver gets the original or any one of the k − 1 redundant

versions of the packet on time. If packets are lost independently with probability p, the probability

of playing out a packet (pR), given that the receiver is willing to wait for l ≤ k of the packets, is

1− pl.
This says nothing, however, about how long a receiver must wait for these l packets.

Computing the probability under a delay constraint will require us to factor in the probability

that the l packets arrive in time. Assume that packets are generated at the sender at intervals of

∆. A playout delay of D at the receiver means that a packet must be present D seconds after its

generation at the sender in order to be used. A packet is played out if the original packet arrives

on time, or if a redundant packet arrives in time. To be in time, the redundant packet’s network

delay, plus the amount of time between its generation and the original packet generation, must be

less than the playout delay. More formally, if we assume network delays are independent from

38

packet to packet, the probability of playing out a packet when the playout delay is D is:

pR = 1−
k−1∏
j=0

(1− (1− p)P [ni + j∆ < D]) (2.2)

Note the more complex dependency of pR on the network loss probability p and the

network delay distribution ni. The result is that the choice of D is more complex, and will most

likely depend strongly on p. Consider once more the basic playout adaptation target: to choose

the minimum D which results in the maximum possible pR. When p is zero, D need only be set

to the largest network delay possible. However, as p increases, the value ofD rapidly increases up

to a maximum value of (k − 1)∆ plus the largest delay possible. Note that p now plays a crucial

role in choosing D once FEC is enabled. A decoupled algorithm might choose D to always be

(k− 1)∆ + maxni, which results in overly large playout delays when network losses are low. A

different decoupled algorithm might choose D to always be some quantile of ni. This algorithm

will result in overly small playout delays when network losses are high. As such, coupling loss

and delay into buffer adaptation is critical for proper loss and delay tradeoffs over a wide range

of network conditions.

2.5.1.2 Reed-Solomon FEC

The dependency of playout probability on the packet loss probabilities and packet delay distri-

butions is even more complex for Reed Solomon coding. A Reed Solomon code causes an extra

n − k packets to be sent for every k data packets. So long as any k of the total n packets trans-

mitted are received, the original k data packets can be recovered [39]. A code which sends n

packets for every k data packets is referred to as an (n, k) code. We assume the n − k FEC

packets are sent piggybacked on subsequent data packets, as shown in Figure 2.24. The first 3

data packets are protected by 2 FEC packets. Rather then being sent separately, the contents of

the 2 FEC packets are attached to the end of the next two data packets. Recent studies by Bolot

[34] have shown that spacing FEC in this fashion results in better performance than sending the

FEC packets immediately after the final data packet.

When a packet is lost, the receiver must wait until it obtains a total of k of the n packets

in the block before recovery can take place. The amount of time needed depends on which of the

39

1 2 3 4 5

FEC over 1,2,3 yields 2 FEC blocks

Figure 2.24: Piggybacking FEC packets for a (5, 3) Reed Solomon code

data packets is to be recovered. If the last data packet (the kth) was lost and is to be recovered,

and the other k − 1 data packets were received, the receiver need only wait for one additional

FEC packet beyond the last data packet.

However, if the first packet among the k data packets is to be recovered, the receiver must

wait for at least k − 1 additional packets to arrive, and possibly more, depending on the number

of those that are lost. The probability of playing out a packet is therefore a weighted average over

all k data packets in the block.

pR =
1
k

k∑
i=1

piR (2.3)

pR =
1
k

k∑
i=1

∑
�Si,| �Si|≥k∨ �Si[i]=1

P [�Si] (2.4)

�Si is a binary vector with n components, representing an arrival pattern. The jth com-

ponent is 1 if the jth packet in the block of n is received before the playout of the ith packet, 0

otherwise. The sum is over those arrival patterns where the ith packet itself arrives in time, or

where at least k packets arrive in time.

Computing P [�Si] is fairly straightforward. Assuming independent packet delays and

losses, it is the product of the timely arrival probability (or one minus it) across each component:

P [�Si] =
n∏
j=0

F (i, j, �Si(j))

where:

F (i, j, z) =




(1− p)P [nj + (i− j)∆ < D] z = 1

1− (1− p)P [nj + (i− j)∆ < D] z = 0
(2.5)

Here, too, there exists a more complex dependency of packet loss and delay on the playout

probability. As in Eq. 2.2, when p = 0, D need only be set to the largest delay experienced by

any packet. As p increases, this delay rapidly increases to its maximum of (k−1)∆+maxj(nj).

40

2.5.1.3 Conditions for Dependency

The complex dependencies of Eqs. 2.2 and 2.5 actually reduce to simpler ones under certain

network conditions. In particular, the dependencies are simplified when the network jitter is

significantly higher than the delay introduced by the FEC mechanism. For the redundant codecs

and Reed-Solomon FEC, this delay is (n − 1)∆.

This claim is very intuitive. The amount of delay in the playout buffer is on the same

order of magnitude as the network jitter. If this delay is very large, there will always be enough

delay in the buffer to make use of the FEC, whether its needed or not. As a result, the FEC

does not need to be factored into the playout buffer sizing, and traditional adaptive playout buffer

algorithms will perform adequately. The claim can also be justified analytically. Consider Eq.

2.5, and in particular the term P (nj +(i− j)∆ < D). The algorithms described by Ramjee et al.

[26] choose a playout delay D which is roughly the average packet delay di plus some multiple

of the standard deviation of the delay vi, D = d̂i + µv̂i. Thus:

P [ni + (i− j)∆ < D] = P [ni + (i− j)∆ < d̂i + µv̂i]

= P [ni < d̂i + µv̂i + (i− j)∆]

Since |i − j| < n, if n∆ � v̂i (FEC delay less than the jitter), the third term in the sum

is insignificant compared to the second, so:

P [ni + (i− j)∆ < D] ≈ P [ni < d̂i + µv̂i]

Assuming stationarity of delays, this eliminates the dependency of F (i, j, z) on both i

and j. Consider once more the common desired behavior: choosing the minimal D which results

in the largest pR. Now, since the i and j terms are no longer significant in F (i, j, z), the choice

is independent of p, as it is in the absence of FEC.

We note, however, that the delay measurements described above indicate that this will

often not be the case. In our trace of the delays from Columbia to U. Mass, we found the RTT to

vary from 50 ms to 200 ms. If one way delays are roughly half this, the delays vary from 25 ms

to 100 ms. Typical packetization delays ∆ are 20 to 60 ms. With a typical block size n of 3 to

6, (n − 1)∆ is between 40 to 600 ms, which is larger than the network jitter. The implication is

41

that playout buffer algorithms will need to take the packet loss probabilities into consideration in

order to operate well.

2.5.1.4 A Note on Applicability

The astute reader might observe that if loss rates are low, the sender should not be sending FEC

in the first place. Such sender adaptation might eliminate the need for coupling FEC to playout

buffer adaptation at receivers. First off, this is possible only for predictable loss rates (that is,

the loss rate at time T can be correctly predicted from reported loss rates at time T-RTT). This

is often not the case. In addition, the coupling is very important for multicast. With multicast,

it is likely that some receivers will experience more loss than others. The sender may choose

to include FEC in order to improve reception quality for lossy receivers. In this case, receivers

experiencing low loss will want to adapt in order to reduce their playout delays, since the FEC is

not needed. Even in the unicast case, receiver adaptation is useful when the sender is incapable

or unwilling of performing adaptation. Receiver adaptation is also useful when feedback is not

sent frequently.

2.5.2 Existing Playout Buffer Algorithms

We briefly review the existing algorithms for playout buffer adaptation that have been proposed

in the literature.

The problem of playout buffer adaptation was first identified by Cohen [1] in 1977. Bar-

beris and Pazzaglia [48] propose delaying the first packet in a talkspurt by a fixed delay T (known

as the Null Timing Information algorithm, NTI), or delaying the first packet by a fixed delay T

minus the transit time of the first packet (the Complete Timing Information algorithm, CTI), the

latter requiring synchronized time at sender and receiver. They derive results for the expected

end-to-end delay of the system based on these algorithms. However, they provide no means for

computing T when the network delay distributions are unknown. Gopal, Wong, and Majithia

present similar algorithms [49] with different assumptions in the analysis of the loss and delay.

Suda, Miyahara, and Hasegawa [50] propose some hybrid algorithms based on the work of Bar-

beris [48]. Montgomery [51] proposes mechanisms to accurately compute the delay of the first

42

packet, needed for the NTI algorithm. Alvares-Cuevas, Bertran, Oller, and Selga [52] propose

mechanisms for measuring the delay of the first packet in a talkspurt for the CTI approach. These

early algorithms all assume the delay distributions are known, and do not address adaptive algo-

rithms for measuring this delay.

The first work in adaptive algorithms is by Naylor and Kleinrock [53], which proposes

to use as a playout delay T in the NTI (Null Timing Information [48]) algorithm the largest

difference in delays among the previous m packets. Recent work in addressing the problem

specifically for the Internet is found in the work of Ramjee et al. [26] and Moon et al. [47].

Campbell [54] describes a QoS architecture which includes components for jitter adaptation.

Their jitter compensation algorithm builds on that of Ramjee [26] by using a slightly different

formulation and less conservative parameters.

There is a large amount of work on the overall problem of continuous media synchroniza-

tion, of which playout buffer adaptation is only one component. The Adaptive Stream Synchro-

nization Protocol (ASP) [55] allows synchronization of multiple streams across multiple hosts,

using one stream as a master. The Lancaster Orchestration Service [56] allows multiple streams to

be coordinated. Escobar et al. [57] propose a synchronization protocol for multi-site conferences.

Since our work builds on the work of Ramjee et al. and Moon et al. [26, 47], we review

it briefly. Ramjee et al. [26] propose four adaptation algorithms. Each algorithm computes, in

some fashion, an estimate of the mean network delay seen up to the arrival of the ith packet, d̂i,

and a variation measure in this delay, v̂i. The playout delay is adjusted at the beginning of each

talkspurt. If ti is the generation time of a packet which is the first in a talkspurt, the playout time

pi of the first packet is computed as pi = ti + d̂i + µv̂i, with µ = 4. For a subsequent packet j in

the same talkspurt, its playout time is computed as pj = pi + tj − ti.
All four algorithms maintain a running estimate of d̂i and v̂i, updated for each packet. All

four compute v̂i in the same fashion:

v̂i = αv̂i−1 + (1− α)
∣∣∣d̂i − ni∣∣∣

where ni is the network delay of the ith packet. The four algorithms thus differ only in their

computation of d̂i:

43

Exp-Avg: This algorithm estimates the mean delay through an exponentially weighted average,

much like the estimation of the variance above. In particular, d̂i = αd̂i−1 +(1−α)ni, with

α = 0.998002.

Fast Exp-Avg: This algorithm is similar to the first, except it adapts more quickly to increases

in delays by using a smaller weighting factor as delays increase:

d̂i =



βd̂i−1 + (1− β)ni : ni > d̂i−1

αd̂i−1 + (1− α)ni : ni ≤ d̂i−1

For the algorithm to respond quickly to increasing delays, β < α. Ramjee et al. [26] used

β = 0.75.

Min-Delays: This algorithm attempts to be more aggressive in minimizing delays. It uses the

minimum delay of all packets received in the current talkspurt (let Si be this set of delays)

as the average delay, i.e. d̂i = minj∈Si(nj)

Spk-Delay: It has been observed by Bolot [18] that network delays often exhibit spikes, which

are sharp increases in delay followed by nearly simultaneous reception of a large number

of packets. Spk-Delay contains a spike detection algorithm which finds these spikes. Dur-

ing a spike, the delay estimate tracks the delays closely, and after a spike, an exponential

weighted average is used. We avoid a detailed description here, referring the reader to the

work of Ramjee et al. [26] for details.

Moon et al. [47] propose an algorithm similar to Spk-Delay, which we call Window. This

algorithm also looks for spikes. During spike mode, the delay of the first packet in a talkspurt is

used as the playout delay. In normal (non-spike) mode, the playout delay is chosen by finding the

delay which represents the qth quantile among the last w packets received by the receiver. This

determination is easily made by incrementally updating a histogram of the delays among the last

w packets. In their simulations, a value of 10, 000 is used for w.

2.5.3 New Playout Buffer Algorithms

In this section, we present our new algorithms which are capable of coupling and meeting non-

zero loss targets.

44

2.5.3.1 Virtual Delay Algorithms

Our first contribution are a class of algorithms we call virtual delay playout adaptation algorithms.

These algorithms are all modifications of existing algorithms to allow them to compensate for

FEC. They are based on the following simple observation. Without FEC, the probability of play-

ing out a particular packet is given in Equation 2.1. With FEC, we can generalize this simple

formulation. A packet is played out if it either arrives before its playout time, or is recovered

before its playout time. If pN is the probability that a packet neither arrives nor is recovered, and

dV is the difference between the time a packet either arrives or is recovered (given it arrives or is

recovered) and the time it was generated, the playout probability is

pR = (1− pN)P [dV < D].

This formulation is identical to the one in Equation 2.1, but with the simple random variables

(p and ni) replaced by the more complex ones (pN and dV). We can therefore use any existing

playout adaptation algorithms which compute the playout delay D as some function of the packet

delays by substituting dV for ni in the computation. Formally:

Definition 1 The virtual delay dV of a packet is the difference in time between the earlier of

the arrival and recovery times, and the generation time. If a packet neither arrives nor can be

recovered, the virtual delay is undefined.

Any existing playout buffer adaptation algorithm is then virtualized by using the virtual

delays to drive it instead of network delays. Deriving an expression for the virtual delay depends

on the FEC mechanism in use.

2.5.3.1.1 Formulation for Redundant Codecs For the redundant encodings mechanism, de-

riving an expression for the virtual delay is straightforward. It is simply the difference in time

between the arrival of a packet or any of its redundant versions, and the generation of the original

packet. If ai is the arrival time of the ith packet (undefined if it never arrives), ti is the generation

time of the ith packet, and each packet contains redundant versions of the previous K−1 packets,

diV (the virtual delay of the ith packet) is defined as:

diV = min
j=0..K−1

(ai+j)− ti (2.6)

45

2.5.3.1.2 Formulation for Reed Solomon FEC For Reed Solomon FEC, deriving an expres-

sion for the virtual delay is also straightforward. We assume an (n, k) code. A packet can be

recovered when k packets in the block arrive. Thus, the virtual delay is the minimum of the kth

arrival in the block and the actual arrival time of the packet (if it arrives), minus the generation

time of the packet. For convenience of notation, assume that i = 0 is the first packet in the block.

Thus:

diV = min(ai, ri)− ti,

where ri is the the smallest arrival time of the jth packet, aj , for j = 1..n which satisfies

n∑
j=1

I(aj ≤ ri) ≥ k.

Note that I(x) is the indicator function, equal to 1 if its argument is true, zero otherwise.

This equation basically says that ri is the arrival time of the kth packet to arrive.

2.5.3.1.3 Implementation In most cases, it is not necessary to derive an expression for dV

to do this. A receiver just implements the FEC algorithm as it normally would. The instant it

recovers a packet, the virtual delay of the packet is computed as the difference in time between

transmission of the packet and the current time. If a packet is correctly received, the virtual delay

is the network delay of the packet, unless it is recovered before it is received. The virtual delays

are then used in the adaptation algorithm instead of the network delays.

It is important to note that implementing the virtualized version of the algorithms is a

natural consequence of a layered implementation of FEC and playout buffer adaptation, where the

recovery using FEC is done before the playout buffer adaptation. The playout buffer adaptation

component cannot differentiate recovered packets from received packets. In this case, it will

compute the arrival time of a packet as either its recovery time or arrival time, whichever is lower.

The result is that the playout buffer adaptation algorithm will unknowingly compute virtual delays

instead of real delays, and thus become virtual.

2.5.3.1.4 Proof of Correctness While virtualization seems a natural approach to adding FEC

awareness, the question is: is it mathematically correct? Does the algorithm, in an ideal setting,

46

achieve its goal?

In this section, we prove, in the case of redundant audio codecs, that virtualization pro-

duces correct behavior. First, we need a definition of correctness. To do this, we look to the

behavior of regular playout buffers in the absence of FEC. These algorithms choose some play-

out delay D. The playout probability is simply

pR = (1− p)P [ni < D].

To be correct, the virtual algorithms should exhibit the same behavior. Choosing a playout

delay of D should result in an playout probability pR such that

pR = (1− pN)P [dV < D].

We have already derived, in equation 2.2, an expression for the probability a packet is

played out with the redundant codec mechanisms. We can therefore prove correctness by showing

that these two are equivalent, that

(1− pN)P [dV < D] = 1−
K−1∏
j=0

1− (1− p)P [ni + j∆ < D].

We start with the definition of dV for redundant codecs, given in Equation 2.6. Note that

this equation is only over those packets which arrive, and is defined only if at least one packet

arrives. In order to perform an analysis with this variable, we must define a closely related one

which is defined under all conditions. We therefore define d′V , which is infinite if none of the

packets arrive. We also presume, without loss of generality, that the arrival time of a packet

which never arrives is infinite. The first step is to derive an expression for P [dV < D]:

P [d′V < D] = 1− P [d′V ≥ D]

= 1− P [min
j=0..K−1

(ai+j)− ti ≥ D]

= 1−
K−1∏
j=0

P [ai+j − ti ≥ D]

47

Computing an expression for P [ai+j − ti ≥ D] :

P [ai+j − ti ≥ D] = 1− P [ai+j − ti < D]

= 1− P [ai+j − ti+j + (ti+j − ti) < D]

= 1− P [ai+j − ti+j + i∆ < D]

= 1− (1− p)P [ni+j + i∆ < D]

The last step causes the addition of the (1 − p) term since the packet must arrive for its

arrival time to be finite. Finally, assuming stationarity:

P [ai+j − ti ≥ D] = 1− (1− p)P [ni + i∆ < D] (2.7)

The result is an expression for P [d′V < D]:

P [d′V < D] = 1−
K−1∏
j=0

(1− (1− p)P [ni + i∆ < D]) (2.8)

Next, we must relate dV to d′V . The relationship is fairly straightforward. Since dV is

defined only when at least one packet arrives, it is equivalent to d′V conditioned on the arrival of

at least one packet. Let event a represent the arrival of at least one packet. Then:

P [dV < D] = P [d′V < D|a]
=

P [d′V < D ∧ a]
P [a]

For d′V to be less than D, it must be finite, which means that at least one packet must

arrive. Thus, the event d′V < D includes the event a. P [a] = 1− pK , so:

P [dV < D] =
P [d′V < D]

1− pK

=
1

1− pk 1−
K−1∏
j=0

(1− (1− p)P [ni + i∆ < D])

48

Finally, pN is the probability that the packet is neither receiver nor recovered. This is just

the probability that all the packets in the block are lost, so pN = pK . Combining this with Eq.

2.9 and inserting into Eq. 2.5.3.1.4 yields the desired result:

(1− pN)P [dV < D] = 1−
K−1∏
j=0

1− (1− p)P [ni + i∆ < D]

This verifies correctness of the virtualization for the redundant codecs. Unfortunately, the

proof of correctness for Reed Solomon FEC is less straightforward, and omitted here.

2.5.3.1.5 Supporting Target Loss Probabilities It is the job of the playout adaptation algo-

rithm to trade loss for delay. For the algorithms by Ramjee et al. [26], this tradeoff is controlled

by the variation multiplier µ, set to a large static value (here, 4). The result are algorithms which

target near zero loss. To be able to target non-zero losses, we must use a different parameter.

If the delay distribution of the packets were known ahead of time, the parameter could easily

be chosen as the desired quantile of the delays. However, the delay distributions are not known

ahead of time. As a result, we propose to make this parameter adaptive.

Our algorithm assumes a target value for the application loss probability pR. Let this

target be pT . Unfortunately, you can’t always get what you want, and this target may be un-

achievable given the current network loss rate. Therefore, we compute a current target loss rate

pC :

pC = max(pT , f(p)) (2.9)

where f(p) is the achievable minimum application loss probability given a network loss rate of

p.

The minimum achievable application loss probability is the application loss probability

given infinitely large buffers. This represents a lower bound on the probability for any adaptive

playout algorithm. f(p) is readily computed:

f(p) = limD→∞1− pR

In the case of redundant codecs, we take the limit of one minus Eq. 2.2:

49

f(p) = limD→∞
K−1∏
j=0

1− (1− p)P [ni + j∆ < D] (2.10)

The limiting case implies that P [x < D] = 1 for any finite r.v. x, including ni + j∆. So:

f(p) =
K−1∏
j=0

1− (1− p) (2.11)

= pK (2.12)

For Reed Solomon FEC, it is the limit of one minus Eq. 2.3. As D → ∞, F (i, j, z)

simplifies to:

F (i, j, z) =




1− p z = 1

p z = 0

From this:

P [�Si] = (1− p)lpn−l

where there are l ones in the vector �Si. pR is a sum of P [�Si] over those �Si which have

at least k ones, or for which the ith entry is a one. The probability of a vector with the ith

component a one is just 1− p. Given the ith component is not a one, the probability is over those

vectors with at least k of the remaining n− 1 positions equal to one. As a result:

f(p) = p

(
1−

n−1∑
l=k

(
n− 1
l

)
(1− p)lpn−1−l

)
(2.13)

To make use of these equations, we maintain a running estimate of the network loss rate

p̂. At the end of each talkspurt, p̂ is used to compute pC via Eq. 2.9 and the desired target loss

rate pT . Then, the actual application loss rate pL is measured. The variation multiplier µ defined

by Ramjee et al. [26] is computed for the next talkspurt based on the following algorithm:

if (pC < pL − θ) ∧ (µ ≤ µmax − δinc)
µ← µ+ δinc;

else if (pC > pL + θ) ∧ (µ ≥ µmin + δdec)

50

µ← µ− δdec;
else

µ← µ

θ is a threshold which introduces hysteresis into the algorithm. µmin and µmax are

the minimum and maximum allowed values for µ. δinc and δdec represent the step size for the

coefficient. In our simulations, we used µmin = 0, µmax = 8, θ = .05, δinc = 0.4 and δdec = 0.2.

We found performance was best when the rate of increase in µ (δinc) was larger than the rate of

decrease (δdec). We believe this is because it allows the algorithm to act more conservatively,

rapidly increasing delays (and thus reducing losses) but gradually reducing them. As such, short

lived decreases in jitter or loss won’t cause the algorithm to undershoot the needed delay.

This small enhancement can be applied to all of the algorithms proposed by Ramjee et al.

[26]. When coupled with virtualization, we call the resulting algorithms adaptively virtual.

2.5.3.2 “Previous Optimal” Algorithm

Ideally, an optimal playout delay algorithm would work as follows1. It would work offline, and

know the packet delays and losses ahead of time. It would choose a playout delay which would

meet an arbitrarily chosen criteria. Unfortunately, this algorithm is non-causal. As with many

non-causal filters, this algorithm can be made causal by delaying the output of the algorithm for

a talkspurt. In other words, the optimal playout delay for the previous talkspurt can be used as

a playout delay for the next talkspurt. More generally, we can use any function of the optimal

playout delays from previous talkspurts as the playout delay of the current talkspurt. For reasons

of simplicity, we considered exponentially weighted averages of previous talkspurts.

At the end of each talkspurt, we compute the optimal playout delayDopt for that talkspurt.

We then choose the playout delay Dw for the next talkspurt as

Dw = ρDw−1 + (1− ρ)Dopt

We chose ρ = .25, which allowed the algorithm to adapt quickly. We also observed that in cases

where the target loss is quite low (less than 2%), we needed to add a variation multiplier, so that
1Note that the original idea for this algorithm was contributed by Lili Qiu

51

the actual playout delay Dact is Dact = Dw + µv̂w where v̂w is computed in the same fashion as

described by Ramjee et al. [26], except that it is driven by Dw. We used the adaptive algorithm

described in Section 2.5.3.1.5 to compute µ, but with µMAX = 6, which we found to give slightly

better results.

We define the optimal playout delay as the one which maximizes F (D, pR), where F ()

is a user satisfaction function. Though to our knowledge there is no widely adopted function

quantitatively characterizing how playout delay and loss determines the audio quality, we can use

any reasonable function that can capture the relationship. For example, a reasonable choice of

F as used in our simulations is to find the minimum playout delay needed to achieve a specified

application loss rate. Our algorithm is general enough that it is not bound to any particular choice

of F , though its success does depend on a sensible F .

For a particular choice of playout delay D, the number of packets played out are all of

those with diV ≤ D. Interestingly, for any F which decreases with increasing delays, the optimal

playout delay can only be equal to one of the values of diV . For any delays between two adjacent

diV , the number of packets for which diV > D remains the same, but the delay increases. As a

result, the user satisfaction function decreases. This means we are trying to maximize:

F (djV ,
1
N

∑
i

I(diV ≤ djV))

over j, where N is the number of packets in the talkspurt, and I() is the indicator function.

In our explorations, we define F (x, y) such that optimal operating point is the minimal

delay which comes closest to the target operating playout probability pR, but does not fall below

it. The result is that we are seeking Dopt as the minimum djV which satisfies:

1
N

N∑
i=1

I(diV < d
j
V)) > pR

Computing Dopt is O(N). To reduce the complexity, we quantize the virtual delays using

a linear quantizer with L steps. The quantizer uses a step size of 5 ms, and sets theL2
th

quantized

value to the virtual delay of the first packet received for the talkspurt. Any packet with a delay

more than 400 ms larger or smaller than the first packet is quantized to L− 1 and 0, respectively.

We maintain a probability mass function of virtual delays in an array. At the end of the talkspurt,

52

the probability distribution function is computed by summing this array. We then perform a

search over the L entries in the distribution array to compute Dw. This search is O(1) (with a

constant factor L).

2.5.3.3 Model-Based “Analytical” Playout Adaptation Algorithm

The analytical algorithm works by using Eq. 2.3 and Eq. 2.2 directly. The equations represent

the resulting playout probability, given the network loss probability p and delay distribution, as a

function of the playout delay D. Our approach is to measure these parameters in real time during

operation, and then use them to choose a value of D which meets some specific criteria.

Our simulations focus on Reed Solomon FEC, in part because the results of Section 2.4

demonstrate its greater utility for low bitrate voice, compared to redundant codecs. Unfortunately,

Eq. 2.3 is not sufficiently simplified to be of practical use in implementing a playout buffer

algorithm.

To develop an alternate formulation, we further assume that within a block of n packets,

the packets arrive in order. We observe that Eq. 2.3 basically says that the probability of playing

out a packet is the probability it arrives or is recovered in time. If pA is the probability it arrives in

time, and pF the probability it is recovered in time given it did not arrive in time, we can express

pR as:

pR = pA + (1− pA)pF

Computing pA is straightforward; its the probability a packet arrives (1 − p) times the

probability its on time given it arrives (P [ni ≤ D]):

pA = (1− p)P [ni ≤ D]

Now let us compute pF . This quantity depends on the position of the lost data packet in

the block of k packets. If the loss occurs in the later part of the group, it has a higher chance of

recovery. This is because the likelihood is high that the FEC packets will arrive in time to make

use of them for recovery. However, for a packet lost in the beginning of the block, the recovery

probability is lower. This is because the FEC packets will not be sent for some time, and are

53

unlikely to arrive in time. pF is therefore computed by averaging over all k data packets:

pF =
1
k

k∑
i=1

piF

Computation of piF is somewhat complex. We define the following terms. Let event

X1(i, j) be the event where the last packet in the group that could possibly be received prior to

the playout time of the ith packet is the i + jth. Let event X2(i + j) be the event that at least

k − 1 packets of those sent before and including packet i+ j arrive. We then have:

piF =
n−i∑

j=k+1−i
P [X1(i, j)]P [X2(i+ j)]

Derivation of P [X1(i, j)] is fairly easy. Since all packets arrive in order, i + j would be

the last to arrive before playout if it would arrive before playout (nj + j∆ ≤ D) and the next

packet (if it arrives) would arrive after playout (nj+1 +(j+1)∆ > D). To simplify computation,

we assume that the two delays nj and nj+1 are nearly identical, so we can assume they are a

single random variable d:

P [X1(i, j)] =



P [D − (j + 1)∆ < d ≤ D − j∆] if i+ j < n

P [d ≤ D − j∆] if i+ j = n

Derivation of P [X2(i+ j)] is also straightforward. It is probability that at least k packets

arrive, among the i+ j − 1 candidate packets (packet i is lost, so it is not a candidate):

P [X2(i+ j)] =
i+j−1∑
r=k

(
i+ j − 1

r

)
(1− p)rpi+j−1−r (2.14)

For simplicity, we define S(j) = P [d ≤ D − j∆] so that:

P [X1(i, j)] =



S(j)− S(j + 1) if i+ j < n

S(j) if i+ j = n

The final expression is:

pR = (1− p)P [d ≤ D]

(1− (1− p)P [d ≤ D])
1
k

k∑
i=1

n−i∑
j=k+1−i

P [X1(i, j)]P [X2(i+ j)]

54

To speed up computation of this function, we attempt to simplify the outer sum. We first

expand P [X1(i, j)], splitting off the term where j = n:

k∑
i=1

n−i∑
j=k+1−i

P [X1(i, j)]P [X2(i+ j)]

=
k∑
i=1

n−i−1∑
j=k+1−i

(S(j) − S(j + 1))P [X2(i+ j)] +
k∑
i=1

S(n − i)P [X2(i+ n− i)]

We then add and subtract S(n − i + 1)P [X2(i + n − i)] so that we can pull the term back into

the summation:

=
k∑
i=1

n−i−1∑
j=k+1−i

(S(j) − S(j + 1))P [X2(i+ j)] +
k∑
i=1

(S(n− i)− S(n− i+ 1)) ∗ P [X2(i+ n− i)]

+
k∑
i=1

S(n− i+ 1)P [X2(i+ n− i)]

=
k∑
i=1

n−i∑
j=k+1−i

(S(j) − S(j + 1))P [X2(i+ j)] +
k∑
i=1

S(n− i+ 1) ∗ P [X2(i+ n− i)]

Now, changing variables to g = j + i, we can invert the orders of summation:

=
k∑
i=1

n∑
g=k+1

(S(g − i)− S(g − i+ 1))P [X2(g)] +
k∑
i=1

S(n− i+ 1)P [X2(n)]

=
n∑

g=k+1

k∑
i=1

(S(g − i)− S(g − i+ 1)) ∗ P [X2(g)] +
k∑
i=1

S(n− i+ 1) ∗ P [X2(n)]

And finally, we can collapse the innermost sum in the first expression, since most of the S(j)

terms cancel each other out:

=
n∑

g=k+1

[(S(g − k)− S(g))P [X2(g)]] +
k∑
i=1

S(n− i+ 1)P [X2(n)]

The final expression is then

pR = (1− p) ∗ P [d ≤ D] +

(1− (1− p)P [d ≤ D])
1
k

55


 n∑
g=k+1

(S(g − k)− S(g))P [X2(g)]

+
k∑
i=1

S(n− i+ 1)P [X2(n)]

)
(2.15)

where

P [X2(g)] =
g−1∑
r=k

(
g − 1
r

)
(1− p)rpg−1−r

S(j) = P [ni ≤ D − j∆]. (2.16)

What we desire for the actual algorithm, in fact, is the inverse of this function: to compute

D as a function of pR and the delay and loss. Since the function cannot be inverted in closed form,

we obtain D by trying various values, computing pR based on those values using Eq. 2.15, and

comparing pR against the desired value. This is effectively a search. In fact, since the function

is monotonically increasing with D, we perform a binary search. At the end of each talkspurt,

the current target loss rate pC is computed, using equation 2.9. We start with an arbitrary value

for D, and compute pR from above. If the result is below pC by more than some threshold (we

used 5%), a higher value of D is tried, and if the result is above pC , a lower value is tried. The

problem can also be posed as a zero-finding problem. We seek the value of x such that

pR(x)− pC = 0.

Standard numerical techniques can also be applied to obtain the value of x, assuming pR

can be differentiated (which is a challenge as well, and one that we did not bother to pursue).

The computation of pR from Eq. 2.15 requires an expression for the network delay distri-

bution P (ni < X) for a range of X, and an estimate of p. We measure the loss probability p by

computing the percentage of lost packets in each talkspurt (p̃), and applying an exponential filter

to average this value, yielding p̂ = 0.25p̃ + 0.75p̂.

To compute the network delay distribution, we maintain the delays of the last 1000 pack-

ets in a queue. Each delay is first quantized, using a linear quantizer with a step size of 5 ms and

upper limit of 5 s. The frequency of each delay is maintained in a histogram. When a new packet

arrives, the delay of the oldest packet is removed from the histogram, and the delay of the newest

56

is added. The delay distribution is computed using a cumulative sum of the frequencies, and is

done only at the end of each talkspurt.

2.5.4 Simulations

The objective of our simulations is two-fold: first, two demonstrate that our new algorithms

outperform the decoupled ones; second, to determine the performance of the new algorithms

compared to each other.

2.5.4.1 Simulation Model

In our simulation model, the sender generates speech packets every 20 ms. Each packet consists of

an IP/UDP/RTP [2] header, totaling 40 bytes, in addition to 24 bytes of speech. This is equivalent

to a 9.6 kb/s speech codec. The speech is protected with a (5,3) Reed-Solomon code covering

non-overlapping groups of three packets. This means that every three packets, two additional FEC

packets are generated. As long as the receiver gets any three of the five packets, the three media

packets are recovered. These two FEC packets are piggybacked on the first two data packets in

the next block, so that the FEC is sent spaced apart. Recent results [34] have shown that spacing

the FEC in this manner yields better performance.

To model packet loss, we used both Bernoulli and Gilbert processes; studies have shown

these to be reasonable models [34]. However, delay models, particularly those that capture cor-

relation, are not easy to find. As a result, we based our simulations on a network model which

combines real measured traces on the Internet with simulated losses. Our real traces are those

described in Section 2.2. We used traces 1, 2 and 3. To decouple the effect of clock skew and

our algorithms, we used the algorithm described by Moon [58] to remove clock skew from these

traces. The resulting average one way delays were 2 ms, 6.4 ms and 13.3 ms, respectively. The

jitter was 2.64 ms, 3.46 ms, and 8.18 ms, respectively, computed as the standard deviation in the

delay.

To support a wider range of simulations, we salted these traces with additional losses.

Of the packets which did arrive in the actual trace, each was subject to a simulated loss with

probability p drawn from a Bernoulli process. By varying p, we were able to adjust the network

57

loss rates from the actual value in the trace (p = 0) to 1 (p = 1). We also ran simulations with

Gilbert loss, and observed similar results.

At the receiver, the playout buffer algorithms were implemented, and the FEC was used

to recover lost packets when possible.

2.5.4.2 Coupled vs. Uncoupled

In this section, we compare uncoupled versions of the Exp-Avg, Spk-Det and Window algorithms

with our virtually adaptive versions of these algorithms. For brevity, we omit the simulation re-

sults of the fast exponential average and min-delay algorithms, since according to our simulation

results, these two algorithms usually do not outperform the others. For the window algorithm, we

use a 1000-packet window instead of the 10,000-packet widow used by Moon et al. [47], which

we found to be too large to adapt adequately. The adaptively virtual versions of the algorithms

operate with a loss target of zero.

We use two uncoupled versions of these algorithms. The first version is the original

algorithm. No extra delay is added to compensate for FEC. In the second version, we added 80 ms

of delay to the original output of each algorithm. This corresponds to N − 1 packet intervals,

enough to receive all the FEC for any packet in the absence of jitter.

Figures 2.25, 2.26 and 2.27 each contain six graphs. The two at the top compare the

performance of the uncoupled Exp-avg algorithm with its adaptively virtual extension; the two

in the middle compare the uncoupled Spk-det algorithm with its extension; the two at the bottom

compare uncoupled window algorithm with its extension. Each graph in each figure has three

curves, corresponding to the two uncoupled versions of the algorithm and the adaptively virtual

extension. The left column in each figure shows the average application loss probability after

FEC and playout buffer adaptation (1− pR) vs. the network loss probability p, varied by salting

the traces. The right column shows the average D across all talkspurts vs. the network loss

probability p. All plots use trace two.

Figure 2.25 corresponds to trace 2, Figure 2.26 corresponds to trace 1, and 2.27 corre-

sponds to trace 3.

First let us consider Figure 2.26. In all three pairs of graphs, the results are the same. The

58

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Exp-avg vs. Its Extension

Exp-avg
Exp-avg (add (N-1)*pkt-length)
Exp-avg Ext

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Exp-avg vs. Its Extension

Exp-avg
Exp-avg (add (N-1)*pkt-length)
Exp-avg Ext

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Spk-det vs. Its Extension

Spk-det
Spk-det (add (N-1)*pkt-length)
Spk-det Ext

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Spk-det vs. Its Extension

Spk-det
Spk-det (add (N-1)*pkt-length)
Spk-det Ext

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Window vs. Its Extension

Window
Window (add (N-1)*pkt-length)
Window Ext

0

0.05

0.1

0.15

0.2

0.25

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Window vs. Its Extension

Window
Window (add (N-1)*pkt-length)
Window Ext

Figure 2.25: Performance of Adaptively Virtual Algorithms on Trace 2

59

original version of the algorithm shows increasing application loss probabilities with increasing

network loss rate. This is because the playout delay computed by the algorithm is not large

enough to make use of the FEC packets. The plots in the right column show this as well. The

original version of each algorithm has a constant playout delay as the network loss varies. For the

original versions of Exp-Avg and Spk-Det, the increase in application loss probability is linear

with the network loss probability. This is because the playout delay is not sufficiently large to

allow the FEC to be consistently used (80 ms is needed).

When we add 80 ms of delay to the output of the original algorithms, the loss rates drop

substantially. Now, there is sufficient delay to make full use of FEC. In fact, the loss rates track

those of our adaptively virtual extensions. However, the decoupled algorithm now tends to have

consistently large playout delays, even when network loss rates are small and the delay is not

needed.

Our adaptively virtual extensions perform much better. The right graphs show that in all

cases, the network delays start low, and gradually increase as network loss rates increase. The

result is that the end-to-end delay of our extension is generally lower than the uncoupled version

which adds 80 ms, but with the same low application loss probabilities. This is exactly the desired

behavior.

The results in Figure 2.26 show similar trends. However, in this trace, the network loss

probabilities are very small to start with, and the jitter is quite low. As a result, the decoupled algo-

rithm without the additional delay tends to significantly underestimate the playout delay needed

to make use of the FEC, as the network loss rates increase. In fact, the playout delays are so small

that the FEC is almost never used, and as a result, the application loss probabilities tend to in-

crease linearly with the network loss probability, just as if the FEC was never sent at all. With the

decoupled algorithm that adds an additional 80 ms, the playout delay is much larger than needed

when network losses are low. Notice, however, that our adaptively virtual algorithm performs

extremely well here. It increases the playout delays gradually as the network loss probability

increases. The result is usually just enough buffering to make use of FEC. This can be seen in

the graphs in the left column, where the application loss probabilities are quite close to the case

where an additional 80 ms is always inserted.

60

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.05 0.1 0.15 0.2

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Exp-avg vs. Its Extension

Exp-avg
Exp-avg (add (N-1)*pkt-length)
Exp-avg Ext

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Exp-avg vs. Its Extension

Exp-avg
Exp-avg (add (N-1)*pkt-length)
Exp-avg Ext

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.05 0.1 0.15 0.2

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Spk-det vs. Its Extension

Spk-det
Spk-det (add (N-1)*pkt-length)
Spk-det Ext

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Spk-det vs. Its Extension

Spk-det
Spk-det (add (N-1)*pkt-length)
Spk-det Ext

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.05 0.1 0.15 0.2

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Window vs. Its Extension

Window
Window (add (N-1)*pkt-length)
Window Ext

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Window vs. Its Extension

Window
Window (add (N-1)*pkt-length)
Window Ext

Figure 2.26: Performance of Adaptively Virtual Algorithms on Trace 1

61

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Exp-avg vs. Its Extension

Exp-avg
Exp-avg (add (N-1)*pkt-length)
Exp-avg Ext

0

0.05

0.1

0.15

0.2

0.25

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Exp-avg vs. Its Extension

Exp-avg
Exp-avg (add (N-1)*pkt-length)
Exp-avg Ext

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Spk-det vs. Its Extension

Spk-det
Spk-det (add (N-1)*pkt-length)
Spk-det Ext

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Spk-det vs. Its Extension

Spk-det
Spk-det (add (N-1)*pkt-length)
Spk-det Ext

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Window vs. Its Extension

Window
Window (add (N-1)*pkt-length)
Window Ext

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Window vs. Its Extension

Window
Window (add (N-1)*pkt-length)
Window Ext

Figure 2.27: Performance of Adaptively Virtual Algorithms on Trace 3

62

Figure 2.27 shows results for trace 3. In this trace, there are substantial amounts of jitter

and loss. The result is that our adaptively virtual algorithm adds enough delay to get all of the

FEC data, even at low loss rates. This can be seen in the graphs in the right column, where

the adaptively virtual playout delays track the playout delays of the decoupled algorithm with

the additional delay. We believe this is because the substantial jitter is causing the algorithm to

require long playout delays even to obtain small amounts of additional FEC.

2.5.4.3 Comparisons of New Algorithms

In this section, we compare the performance of our new algorithms (adaptively virtual extensions,

previous optimal, and analytical) against each other, and against the optimal one. The simulation

environment is identical to that described in Section 2.5.4.1. Our simulations cover two met-

rics: the ability to make good use of FEC with small delays, and the ability to achieve a target

application loss rate with the minimal delay.

2.5.4.3.1 Using FEC with Minimal Delays Figure 2.28 depicts the application loss rate (left

column) and average playout delay (right column) vs. network loss rate. Each graph shows the

performance of the adaptively virtual Exp-Avg algorithm Exp-Avg Ext, the adaptively virtual Spk-

Det algorithm Spk-Det Ext, the adaptively virtual window algorithm Window Ext, the previous

optimal Prev-opt (Bin) algorithm and the analytical algorithm, all targeting zero loss. We also

include a plot of an unrealizable non-causal “optimal” algorithm. This algorithm computes the

playout delay for all talkspurts at the beginning of the trace (assuming knowledge of the packet

delays and losses in the entire trace), based on minimizing the average delay for the entire trace for

a given application loss probability. This optimal algorithm is actually the lower bound described

by Moon [47], but with the virtual delays replacing the network delays in the computation.

The figure has three pairs of graphs; each pair is obtained from a different trace. The

results indicate fairly consistent behaviors across traces. The adaptively virtual window algorithm

tends to have the highest delays, and low loss rates, but not the lowest. The analytical and previous

optimal algorithms generally have lower end-to-end delays than the adaptively virtual window

algorithm (with the exception of the previous optimal algorithm in trace 1), with application loss

63

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 0.05 0.1 0.15 0.2

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Trace 1

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Trace 1

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Trace 2

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.05

0.1

0.15

0.2

0.25

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Trace 2

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Trace 3

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Trace 3

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

Figure 2.28: Comparison of Loss and Delay Performance across All Algorithms

64

probabilities that are generally equal to or less than the adaptively virtual window algorithm.

This indicates that the analytical and previous-optimal algorithms are generally preferable to the

adaptively virtual window algorithm.

The virtually adaptive Exp-Avg algorithm appears to perform quite well. Its delays are

consistently closest to the optimal (only Spk-Det does noticeably better in trace 3), and its loss

probabilities are only slightly higher than the previous optimal and analytical algorithms. The

virtually adaptive Spk-Det algorithm also maintains low delays, but its application loss probabili-

ties are generally the highest. This would indicate that the adaptively virtual Exp-Avg is generally

preferable to the adaptively virtual Spk-Det. This result contradicts those of Ramjee et al. [26],

where the more sophisticated Spk-Det outperforms Exp-Avg. We believe this is because Spk-Det

attempts to track the network delays too closely and loses packets whenever its delay estimate is

small. The results by Moon et al. [47] agree with ours.

2.5.4.3.2 Achieving a Specific Loss Target All of our algorithms are capable of achieving a

specified loss target, input as a parameter to the algorithm. In Fig. 2.29, we consider the ability

of the algorithms to meet a target loss probability of 0.07, as the network loss probability varies

from 0 to 0.02. As with the other plots, the left column represents the application loss probability,

and the right column, the end-to-end delay. Each pair of graphs is for a different trace.

The traces show that the adaptively virtual Exp-Avg and Spk-Det are the consistent top

performers. They consistently come close to the target loss rate, and follow the optimal playout

delay as well. The adaptively virtual window is consistently the worst performer. The analyti-

cal and previous optimal algorithms are somewhere between. We note that trace 1 presented a

challenge for all of the algorithms. The small amounts of jitter in the trace meant that increasing

the loss to the target with small network loss probabilities requires very fine tuning of the play-

out delay. As such, all the algorithms significantly undershoot the target until the network loss

probability hits the target.

2.5.4.3.3 Achieving a Varying Loss Target In Fig. 2.30, we consider the ability of the al-

gorithms to meet a wide range of targets under a fixed network condition. This fixed network

condition corresponds to the unsalted traces 1, 2 and 3. The target loss rate is varied from 0 to

65

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.05 0.1 0.15 0.2

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Trace 1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.05 0.1 0.15 0.2

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Trace 1

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Trace 2

0

0.05

0.1

0.15

0.2

0.25

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Trace 2

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Network Loss Probability

Trace 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Network Loss Probability

Trace 3

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical

Optimal

Figure 2.29: Performance of Algorithms in Achieving a Target Loss of 0.07

66

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Target Loss Probability

Trace 1

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Target Loss Probability

Trace 1

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Target Loss Probability

Trace 2

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Target Loss Probability

Trace 2

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
pp

lic
at

io
n

L
os

s
Pr

ob
ab

ili
ty

Target Loss Probability

Trace 3

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

A
ve

ra
ge

 E
nd

 to
 E

nd
 D

el
ay

 (
se

co
nd

s)

Target Loss Probability

Trace 3

Exp-avg Ext
Spk-det Ext
Window Ext
Prev-opt (Bin)
Analytical
Optimal

Figure 2.30: Performance of Algorithms in Achieving Varying Target Loss Probability

67

15%. As with the other plots, the application loss rate and playout delay are shown.

Ideally, the application loss rate should equal the target, corresponding to a straight line

with slope one on the left graphs. The non-causal optimal algorithm achieves this goal, of course.

The plots on the right show that the optimal algorithm decreases the end-to-end delay as the target

increases, as expected.

The results here are consistent with those in the previous section. The adaptively virtual

window algorithm is the worst performer, consistently overshooting the required delay and, as

a result, undershooting the target. The previous optimal algorithm consistently undershoots the

target loss, although it comes close in all traces but the first (Its worthwhile to note that trace 1

has little jitter or loss, making it difficult to achieve a large target loss rate). Not surprisingly, it

also tends to overshoot the optimal delay. The analytical algorithm tends to have very good delay

properties, coming close to the optimal delay. Its ability to meet the loss target varies, though.

It consistently undershot it in trace 1 (although, in all fairness, all other algorithms undershot it

in this trace as well), but overshot it in all the others, although not by too much. Performance is

especially good in trace 2, where the analytical algorithm is the best performer. The adaptively

virtual Exp-Avg and Spk-Det have similar performance. They both came consistently close to the

target with reasonably good delays.

Overall, the simulations demonstrate that our algorithms were generally able to meet the

goal of achieving a desired target loss rate. The Exp-Avg and Spk-Det appear to be the best

performers overall.

2.6 Transport of Media-Unaware FEC

There are several practical issues to be resolved when using FEC for recovery of real time media.

This includes its interaction with playout buffers, as we have discussed above, but it also includes

the seemingly mundane task of pure transport. The issue is: how is the FEC data actually trans-

ported from the senders to receivers? In particular, if the FEC protects data transported by RTP,

how is FEC incorporated into the RTP framework? In this section, we consider this problem for

XOR-based parity in more detail. Extension of the concepts described here to Reed Solomon

codes is under way [59].

68

2.6.1 Transport Requirements

A protocol for transport of FEC within the RTP framework poses the following problems:

• Each parity packet protects some set of the media packets. How is this information con-

veyed? Is it within the FEC packets, or signaled out of band? How flexible is it? What

set of codes can be supported by it? Is it general purpose enough that the receiver does not

need to know details of specific codes?

• RTP conveys the media, but also contains a number of header fields useful for playback of

that media. This includes sequence numbers, timestamps, framing bits, and user identifiers.

Is this information protected too? How can it be done efficiently?

• In multicast groups, it cannot be expected that all receivers will understand the FEC data.

How can the FEC be transported in such a way that receivers which don’t understand FEC

can still get the media stream?

• RTP access links can use RTP compression [60] to reduce the overheads of the IP/UDP/RTP

headers. This compression algorithm makes assumptions about the structure of the RTP

header fields in order to work effectively. How can the FEC be transported within RTP

without violating the assumptions made by RTP compressors?

• The overhead of FEC can be substantial. In order to reduce it, it is desirable to piggyback

FEC information on subsequent media packets. How can this be accomplished within the

RTP framework?

2.6.2 Previous Work

Work on transport of media-aware FEC began in 1995, and culminated in the RTP payload format

for redundant codecs, standardized in RFC2198 [31]. Work continues on evolving this protocol

based on implementation experience [61].

Media unaware FEC, using Reed Solomon codes in particular, has been used to support

reliable multicast [39, 40, 62, 63]. However, these efforts have not focused on the transport

69

component, and have not considered support of real time services. Nor have they considered the

use of XOR-based parities.

The first work on transport of media-unaware FEC for real time services was in 1996,

with an Internet draft by Budge et al., which has long since expired. They define a new RTP

payload type which identifies the packet contents as XOR-based FEC-protected media. The RTP

payload format in their proposal consists of two elements, the media-correction header and the

payload. The media-correction header is 24 bits, and consists of three fields. The first is called

the scheme, the second the mode, and the third, the length. The scheme identifies the particular

error correction scheme in use. In particular, it defines the set of data packets over which the

FEC is applied, and the order in which the packets (data and FEC) are sent. The mode identifies

which packet in a group of data and FEC packets (typically called a block) this particular one

corresponds to. For packets that contain just data (and not FEC), the length field contains the

length of the payload. For packets which contain FEC, the length field contains the XOR of the

length fields of the media packets which are covered by the FEC (by covered, we mean those

packets used in the XOR that generates the FEC packet). Since packets must be padded out

with zeroes (to be equal lengths) in order to perform the XOR operation, the length field allows

recovery of the actual length of the pre-padded packets.

We find the work by Budge et al. to be lacking in several ways compared to the require-

ments:

• It does not indicate the media type of the actual data being protected. This is because

the RTP PT field always indicates that the payload format is ”FEC-protected media”. Since

many applications will need to change media payload types mid-stream (for example, send-

ing Dual-Tone Multi-Frequency (DTMF) tones in-band), the presence of this field is im-

portant.

• The RTP timestamp field and marker bit are not covered by FEC. When a packet is lost

and then reconstructed, the timestamp and marker bits are copied from the another packet.

Correct recovery of these fields is important. Without it, playout buffer algorithms will

obtain incorrect data on network latency, and silence durations may not be reconstructed

properly.

70

• It defines four very specific schemes (one of which is no error correction), and assigns

a value for the scheme field in the header to each. New schemes must be registered with

IANA, the details written up, and receivers and senders alike must be upgraded to recognize

and support them. This makes backwards compatibility difficult, requiring capabilities

negotiation. It also means that transmitters are restricted to using the schemes defined thus

far. The three non-null schemes defined by Budge use heavy forward error correction.

These schemes are not appropriate for all loss conditions.

• The FEC is transmitted in the same RTP stream as the media. This means it will not work

for multicast groups composed of FEC-aware and FEC-unaware receivers.

2.6.3 Our Approach

Our approach builds on Budge et al, but generalizes it substantially to meet the desired require-

ments. It is currently standardized in RFC 2733 [64].

2.6.3.1 Overview

First off, we specify that the FEC is sent in a separate RTP stream (that is, it is sent to a different

port than the media it protects). We do allow, however, for the FEC to be sent piggybacked

on the media RTP stream, using a redundant encoding [31]. The media packets are unaffected

by the FEC, which is good for multicast. Rather than defining specific schemes ahead of time,

we propose a generic approach. Each FEC packet contains a bitmask, called the offset mask,

containing 24 bits. If bit i in the mask is set to 1, the media packet with sequence number N + i

was one of the media packets used to generate this FEC packet. N is called the sequence number

base, and is sent in the FEC packet as well. The offset mask and payload type are sufficient to

signal arbitrary parity-based forward error correction schemes with little overhead.

We also propose mechanisms to recover all of the RTP header fields. The value of certain

fields in the RTP header of the FEC packet is set to the XOR of those fields in the RTP media

packets being protected. This allows them to be recovered without any additional overhead.

Unfortunately, all fields cannot be protected in this manner. The RTP version field must always

be two to pass validity tests. The timestamp and sequence number must increase monotonically

71

not to break RTP header compression, and the Synchronization Source (SSRC) field must be

the same to determine which user is sending the data. Our approach takes all of these factors

into account. Those fields which need to be recovered, but which cannot be set arbitrarily in the

header, are included in the payload of the FEC packet.

2.6.3.2 Details

2.6.3.2.1 FEC Packet Structure An FEC packet is constructed by placing an FEC header

and FEC payload in the RTP payload, as shown in Figure 2.31:

RTP Header

RTP Payload

FEC Header

FEC Payload

Figure 2.31: FEC packet structure

2.6.3.2.1.1 RTP Header of FEC Packets The version field is set to 2. The padding

bit is computed via the protection operation, defined below. The extension bit is also computed

via the protection operation. The SSRC value will generally be the same as the SSRC value of the

media stream it protects. The CSRC Count (CC) and marker bits are computed via the protection

operation. Neither the Contributing SSRC (CSRC) field or extension are present, independent of

the values of the CC or Extension (X) bits.

72

The sequence number (SN) has the standard definition: it must be one higher than the

sequence number in the previously transmitted FEC packet. The timestamp (TS) must be set to

the value of the media RTP clock at the instant the FEC packet is transmitted. This results in the

TS value in FEC packets to be monotonically increasing, independent of the FEC scheme.

The payload type for the FEC packet is determined through dynamic, out of band means.

According to RFC 1889 [2], RTP participants which cannot recognize a payload type must discard

it. This provides backwards compatibility. The FEC mechanisms can then be used in a multicast

group with mixed FEC-capable and FEC-incapable receivers. Furthermore, if the FEC is sent as

a separate RTP stream, using a different multicast group, the FEC-unaware hosts won’t even be

listening for that stream. This won’t be the case if the FEC is piggy backed using RFC 2198 [31].

2.6.3.2.1.2 FEC Header This header is 12 bytes. The format of the header is shown

in Figure 2.32, and consists of an SN base field, length recovery field, E field, PT recovery field,

mask field and TS recovery field.

E PT Recovery (7 bits)

TS Recovery (32 bits)

SN Base (16 bits) Length Recovery (16 bits)

Mask (24 bits)

Figure 2.32: Parity header format

The length recovery field is used to determine the length of any recovered packets. It is

computed via the protection operation applied to the unsigned 16 bit representation of the sums

of the lengths (in bytes) of the media payload, CSRC list, extension and padding of media packets

associated with this FEC packet (in other words, the CSRC list, extension, and padding, if present,

are “counted” as part of the payload). This allows the FEC procedure to be applied even when

the lengths of the media packets are not identical. It also allows for recovery of the CSRC list and

extension, if present. For example, assume an FEC packet is being generated by XOR’ing two

media packets together. The length of the two media packets are 3 (0b011) and 5 (0b101) bytes,

respectively. The length recovery field is then encoded as 0b011 XOR 0b101 = 0b110.

The E bit indicates a header extension, allowing for future extensions of the format. Under

normal operation, it is set to zero. Recent extensions for unequal error protection [65], where only

73

portions of the packet are protected by FEC, have been defined as an extension to our format, and

make use of the E bit.

The PT recovery field is obtained via the protection operation applied to the payload type

values of the media packets associated with the FEC packet.

The mask field is 24 bits. If bit i in the mask is set to 1, then the media packet with

sequence number N + i is associated with this FEC packet, where N is the SN Base field in

the FEC packet header. The least significant bit corresponds to i = 0, and the most significant

to i = 23. The SN base field is set to the minimum sequence number of those media packets

protected by FEC. This allows for the FEC operation to extend over any string of at most 24

packets.

The TS recovery field is computed via the protection operation applied to the timestamps

of the media packets associated with this FEC packet. This allows the timestamp to be completely

recovered.

The payload of the FEC packet is the protection operation applied to the concatenation of

the CSRC list, RTP extension, media payload, and padding of the media packets associated with

the FEC packet.

2.6.3.2.2 Protection Operation The protection operation involves concatenating specific fields

from the RTP header of the media packet, concatenating the payload, padding with zeroes, and

then computing the XOR across the resulting bit strings. The resulting bit string is used to gener-

ate the FEC packet.

For each media packet to be protected, a bit string is generated by concatenating the

following fields together in the order specified:

• Padding Bit (1 bit)

• Extension Bit (1 bit)

• CC bits (4 bits)

• Marker bit (1 bit)

• Payload Type (7 bits)

74

• Timestamp (32 bits)

• Unsigned 16 bit representation of the sum of the lengths of the CSRC List, length of the

padding, length of the extension, and length of the media packet (16 bits)

• If CC is nonzero, the CSRC List (variable length)

• If X is 1, the Header Extension (variable length)

• The payload (variable length)

• Padding, if present (variable length)

If the lengths of the bit strings are not equal, each bit string that is shorter than the length

of the longest, is padded to the length of the longest. The parity operation is then applied across

the bit strings. The result is the bit string used to build the FEC packet. Call this the FEC bit

string.

The first (most significant) bit in the FEC bit string is written into the Padding Bit of the

FEC packet. The second bit in the FEC bit string is written into the Extension bit of the FEC

packet. The next four bits of the FEC bit string are written into the CC field of the FEC packet.

The next bit of the FEC bit string is written into the marker bit of the FEC packet. The next 7 bits

of the FEC bit string are written into the PT recovery field in the FEC packet header. The next 32

bits of the FEC bit string are written into the TS recovery field in the packet header. The next 16

bits are written into the length recovery field in the FEC packet header. The remaining bits are

set to be the payload of the FEC packet.

2.6.3.2.3 Reconstruction Let T be the list of packets (FEC and media) which can be com-

bined to recover some media packet xi. The procedure is as follows:

1. For the media packets in T, compute the bit string as described in the protection operation

of the previous section.

2. For the FEC packet in T, compute the bit string in the same fashion, except always set the

CSRC list, extension, and padding to null.

75

3. If any of the bit strings generated from the media packets are shorter than the bit string

generated from the FEC packet, pad them to be the same length as bit string generated

from the FEC. The padding MUST be added at the end of the bit string, and MAY be of

any value.

4. Perform the exclusive or (parity) operation across the bit strings, resulting in a recovery bit

string.

5. Create a new packet with the standard 12 byte RTP header and no payload.

6. Set the version of the new packet to 2.

7. Set the Padding bit in the new packet to the first bit in the recovery bit string.

8. Set the Extension bit in the new packet to the second bit in the recovery bit string.

9. Set the CC field to the next four bits in the recovery bit string.

10. Set the marker bit in the new packet to the next bit in the recovery bit string.

11. Set the payload type in the new packet to the next 7 bits in the recovery bit string.

12. Set the SN field in the new packet to xi.

13. Set the TS field in the new packet to the next 32 bits in the recovery bit string.

14. Take the next 16 bits of the recovery bit string. Whatever unsigned integer this represents,

take that many bytes from the recovery bit string and append them to the new packet. This

represents the CSRC list, extension, payload, and padding.

15. Set the SSRC of the new packet to the SSRC of the media stream it’s protecting.

This procedure will completely recover both the header and payload of an RTP packet.

2.6.4 Determination of the Set of Packets

Section 2.6.3.2.3 describes a procedure for recovering a missing packet. The first step in this

process is to obtain a list T of FEC and media packets which can be used to reconstruct some

76

media packet xi, where T is some subset of the FEC and media packets received so far. The

important question is: how is this done?

The process is best understood by viewing each packet (both media and FEC) as a vector.

This vector has its ith component 1 if media packet xi is present in the XOR used to generate the

packet, 0 otherwise. A media packet xi can be represented as a vector with only one component

equal to 1, in the ith position. We furthermore consider the vectors elements to be over GF2; this

has the effect of turning addition into exclusive or, and multiplication into logical and. The task,

then, is to determine some subset T of the vectors such that:

∑
�vz∈T

�vz = �1i

where �1i is the vector with a 1 in the ith position, 0 everywhere else, and �vz is a vector

representing a packet. When this equality holds, we can recover packet xi.

The algorithm we use for this process proceeds in two steps:

1. Reduction of the available set of packets (vectors)

2. Computation of T

2.6.4.1 Reduction

The reduction step is fairly straightforward. As time passes, packets continually arrive. Not all of

these packets can be used to recover a specific media packet. The aim of the reduction step is to

eliminate from consideration those packets which will not be useful in the recovery of a specific

media packet xi, and arrive at a minimal set Z of FEC and media packets.

The most obvious way to perform such a reduction is by timing them out. Our approach

is to presume that since the application is real time IP telephony, the FEC does not cover a span of

time greater than the maximum tolerable end-to-end delay, which is around 250 ms. Thus, if the

aim is to recover packet xi, any packets, FEC or data, which are associated with media packets

played out more than 250 ms before xi, are not considered when recovering xi.

We can further reduce the set of packets useful for recovering packet xi by observing that

the FEC is sometimes performed in blocks. There is no overlap in protection from one block

77

to the next. Any FEC or media packets in a different block from xi are therefore not useful for

recovering xi. Since the packet format does not convey a block size, it must be computed at the

receivers. As it turns out, this computation is just a simple connected graph computation.

We construct the graph G in the following manner:

• We initialize the graph with N nodes, each representing a media packet within the 250 ms

window of xi. It doesn’t matter whether those media packets arrived or not.

• For each FEC packet that has arrived, and is under consideration, add a node l to the

graph. If the FEC packet is an XOR over media packet xj , add an edge between l the node

representing media packet xj .

From the construction, it is clear that if a path exists from the node representing xi to

some other node l, the packet associated with l might be used in the recovery of xi. From the

contra-positive, a packet cannot be used if there is no path to it from xi. Thus, we compute

the connected component of G which includes the node representing packet xi. The minimal Z

is then constructed by including in it only those FEC packets associated with the nodes in the

connected component. We also include any media packets that have arrived, and are covered by

the FEC packets included in Z .

2.6.4.2 Computing T

Computing T occurs by performing a search over the subsets of the packets (their vector equiva-

lents, actually) in Z . We convert Z into a matrix M . This is done by taking the vectors associated

with each packet in Z , padding them with zeroes to be all the same lengths, and making each

vector a row in M . If Z contained N equations, the matrix M has N rows. The number of

columns in M is the same as the total number of media packets covered by all the FEC packets

in Z .

The aim of the algorithm is to compute the submatrix of M , formed by taking a subset of

the rows, such that the sum of those vectors (in GF2) in the submatrix is equal to the packet to be

recovered. As there are N rows, there are 2N possible subsets. One or more subset may result

in a combination of packets such that when XOR’ed together, the result is the missing packet

78

xi. For the vast majority of codes, an actual full search over this space is acceptable. The delay

restrictions of IP telephony limit the useful block sizes to 5 to 10 packets. A O(2N) search for

such small N poses no computational problems at all.

However, to improve performance, we have developed an improved algorithm that is very

effective on sparse FEC. By sparse, we mean that there are many packets that can be used (large

N), but each FEC packet is a XOR over a small number of media packets (small compared to

N). This implies that the matrix M is sparse.

The algorithm works by realizing that recovery of some packet xi requires that at least

one of the vectors in the set T has a one in the ith position. More precisely, there must be an

odd number of vectors in the set with a one in the ith position. This additional constraint allows

us to reduce the set of combinations which must be checked. The reduction improves with the

sparseness of the matrix.

The algorithm is defined recursively through a function CS(S, val). This function takes a

set of vectors S, and a desired vector �val. The function attempts to find the subset of S so that

the XOR of the subset equals �val. The function returns nothing if no subset exists, otherwise, it

returns the subset. Initially, the function is called with Z as the set S, and �val as �1i to recover the

ith packet.

The baseline case of the function is simple. If S contains a single vector, and this vector

equals �val, the function returns that vector. Otherwise, it returns nothing.

Otherwise, the function proceeds by finding the column j in the matrix M (where M is

formed from the vectors in S) such that the jth component of �val is a one, and the number of

ones in the jth column of M are smaller than any other column k for which the kth component

of �val is a one. In other words, for each component of �val that is a one, the number of ones in the

corresponding column of M is checked, and the column with the fewest ones is computed. This

is done by a simple linear search over M .

Lets say there arem rows ofM that have a one in the jth position, where j was computed

from the previous paragraph. Since the sum over T must have a one in the jth position, there must

be an odd number of those m vectors present in T . The total number of combinations of those

m vectors with an odd number is exactly 2m−1. Each of those combinations yields some subset

79

R of vectors. One of these subsets must be in T . So, we try each subset, and see if some further

subset of the remaining N − m vectors, when XOR’ed together with the vectors in the subset,

yields the desired value.

To do this, Those vectors in R are summed, and the result summed with �val, yielding

�val
′
. The set R is then removed from S, and CS is called, this time with the reduced set of

vectors S − R and �val
′

as its arguments. If the function returns no set, the loop continues,

otherwise the function returns the set that was returned, unioned with R.

From this description, it can be readily observed that the worst case compute time of this

function, denoted f , is dependent on the number of vectors n in the set S:

f(n) = 2m−1f(n−m)

The value of m depends on the matrix, and will be different on each iteration above.

Assuming the most desirable case, m = 1 for each iteration, we have the very nice result that

f(n) = O(1). Assuming m is some constant for each iteration:

f(n) = 2
m−1

m
n

The result is that the actual run time of the algorithm can vary between O(1) and ex-

ponential. However, for sparse matrices, where m is often 1 or 2, the compute time is much

reduced.

2.7 Conclusion and Future Work

In this chapter, we have considered the problem of high quality, end-to-end transport of voice for

IP telephony. To this end, we took some measurements of Internet performance, and considered

its ability to deliver high quality voice to the application. We concluded that the addition of a

jitter buffer tends to increase the burstiness of loss seen by the application, but that the majority

of burst lengths were still small. The implication is that FEC is still a viable solution for recovery.

After reviewing existing recovery approaches, we considered whether recovery of the

speech content, or recovery of the lost state, of a low bitrate speech codec was more important.

Our subjective and objective metrics indicate that recovery of state of the codec is more important.

80

This implies that use of traditional channel coding techniques, such as parity and Reed Solomon

codes, are appropriate.

While we did not attempt to propose any new channel coding approaches for packet pro-

tection, we considered several important problems that arise when it is actually used. First, we

observed that there is an important interaction between the use of FEC and adaptive jitter buffers.

We have demonstrated that there is a need to couple both loss and delay into adaptive playout

buffer algorithms when FEC is used. We have presented a number of novel algorithms to per-

form this coupling. One such algorithm is in fact a class of algorithms called adaptively virtual

algorithms that extend existing algorithms. Our algorithms also allow us to control the target

application loss probabilities. Simulations reveal that our algorithms are effective, and that the

more complex algorithms we developed don’t perform the adaptively virtual ones.

Finally, we considered the problem of generic transport of FEC. The problem has been

solved for media-aware FEC. For media-unaware FEC, we propose a mechanism for transport

within the RTP framework. Our protocol is very general, allowing any parity code to be used,

without prior negotiation or understanding between sender and receivers.

81

Chapter 3

QoS Feedback

3.1 Introduction

The basic service provided by the Internet is known as best-effort. This means that the network

makes no guarantees about loss rates, delays, jitter, or rate provided to packets. Furthermore,

there is no admission control, which means that congestion can arise at any time and at any point

in the network.

In Chapter 2, we examined prior work on the performance delivered by the Internet, and

present our own experiments to assess it. The only consistent result is that end-to-end loss and

delay conditions are highly variable. They depend on factors such as time of year, day of the

week, time of day, and location. They also tend to vary quite a lot even over short intervals.

In such an environment, multimedia applications need to be adaptive [32]. This means

that they must adapt to network conditions, varying parameters such as codec type, bitrates,

quantization parameters, and redundancy to operating points which yield good performance.

In order to support these adaptive applications, feedback on the Quality of Service (QoS)

delivered by the network is critical. The feedback provides data senders information from data

receivers about the reception quality. Typically this would include loss characteristics, round trip

delays, and jitter. Unfortunately, supporting feedback becomes more problematic in a multicast

group. There can be a large number of senders and an extremely large number of receivers,

depending on the application. For example, shuttle launches and other sessions on the MBone

82

have seen many hundreds of receivers [66, 67]. As multicast eventually becomes the distribution

medium for television content, one can envision concerts or talk shows on the Internet where the

number of receivers can be in the thousands and millions.

The problem is further complicated by the fact that the group sizes and nature of the

applications can be highly dynamic. For example, a conference call might start with a few people,

but could easily expand into hundreds as participants and listeners are invited in. As another

example, a conference which starts out as private (such as a debate between two senators) might

at some point become public, and grow to include thousands of listeners.

Because the size of multiparty, multicast-based groups can vary greatly in size, and the

size can change dynamically, we believe it critical to support this kind of wide range of applica-

tions with a single feedback mechanism which scales well from two person to two million person

groups, and to groups where the membership is dynamic. Such scalability allows the boundaries

between traditionally separate applications (such as TV and conferencing) to blur, enabling new

applications and services.

In this chapter, we consider mechanisms for scaling QoS level feedback in these environ-

ments. As QoS feedback is provided by the Real Time Transport Protocol (RTP) [2], we start with

those feedback mechanisms as a baseline. We first describe the feedback mechanism in RTP, and

point out several difficulties encountered when scaling the algorithm. We then outline the ideal

behavior we would like to see in a solution for IP telephony. To explore the solution space, we

present a taxonomy of solutions that characterize the ways in which feedback can be provided.

Using our taxonomy, we point out past solutions to the scaling problem, and discuss how they are

not appropriate for the requirements that have been outlined. We then propose our solutions. Our

solution consists of two algorithms; one is a set of algorithms generally dubbed reconsideration.

We present, analyze, and simulate reconsideration, and demonstrate its effectiveness as a partial

solution to the scaling problems. We then present a novel sampling algorithm as an orthogonal

solution that further improves scalability.

83

3.2 Overview of RTP

RTP provides transport services for real time applications, including IP telephony. It consists

of two parts, which are the transport part itself (RTP), and a control and feedback component,

called the Real Time Control Protocol (RTCP). Both RTP and RTCP are engineered for multicast

multimedia conferences.

RTP is generally used in conjunction with the User Datagram Protocol (UDP), but can

make use of any packet-based lower-layer protocol. When a host wishes to send a media packet,

it takes the media, formats it for packetization, adds any media-specific packet headers, prepends

the RTP header, and places it in a lower-layer payload. It is then sent into the network, either to a

multicast group or unicast to another participant.

op
t.

op
t.

op
t.

timestamp

sequence number

synchronization source identifier (SSRC)

MV(2)

0x00

header extension

XP

bytes

count
CSRC

contributing source identifiers (CSRC)

U
D

P
 p

ac
ke

t

0 8 16 24 32bit

payload (audio,video,...)

payload type

Figure 3.1: RTP fixed header format

The RTP header (Fig. 3.1) is 12 bytes long. The V field indicates the protocol version.

The X flag signals the presence of a header extension between the fixed header and the payload.

If the P bit is set, the payload is padded with zeroes to ensure proper alignment for encryption.

Participants (senders or listeners) in a multicast group are distinguished by a random 32-

bit Synchronization Source (SSRC) identifier. Having an application-layer identifier allows to

84

easily distinguish streams coming from the same translator or mixer and associate receiver reports

with sources. In the rare event that two users happen to choose the same identifier, they redraw

their SSRCs.

RTP supports the notion of media-dependent framing to assist in the reconstruction and

playout process. The marker bit, M, provides information for this purpose. For audio, the first

packet in a voice talkspurt can be scheduled for playout independently of those in the previous

talkspurt. The bit is used in this case to indicate the first packet in a talkspurt. For video, a

video frame can only be rendered when its last packet has arrived. Here, the marker bit is used to

indicate the last packet in a video frame.

The payload type (PT) identifies the media encoding used in the packet. The sequence

number (SN) increments sequentially from one packet to the next, and is used to detect losses

and restore packet order. The timestamp (TS), incremented with the media sampling frequency,

indicates when the media frame was generated.

RTP supports the notion of a mixer. A mixer is a device that takes RTP streams from many

users, and combines them into a single stream containing a mix of the those streams. However, it

is still desirable to indicate which participants have their audio mixed in a particular packet. This

is the purpose of the Contributing SSRC or CSRC field. It contains a list of SSRC for those

users mixed in a packet. The field is optional.

The payload itself may contain headers specific for the media.

3.2.1 RTCP: Control and Management

The Real Time Control Protocol (RTCP) is the companion control protocol for RTP. Media

senders (sources) and receivers (sinks) periodically send RTCP packets to the same multicast

group (but different ports) as is used to distribute RTP packets. Each RTCP packet contains a

number of elements, usually a sender report (SR) or receiver report followed by source descrip-

tions (SDES). Each serves a different function.

Sender Reports (SR) are generated by users who are also sending media (RTP sources).

They describe the amount of data sent so far, as well as correlating the RTP sampling timestamp

and absolute (“wall clock”) time to allow synchronization between different media.

85

Receiver Reports (RR) are sent by RTP session participants which are receiving media

(RTP sinks). Each such report contains one block for each RTP source in the group. Each

block describes the instantaneous and cumulative loss rate and jitter from that source. The block

also indicates the last timestamp and delay since receiving a sender report, allowing sources to

estimate the round trip time to RTP sinks.

Source Descriptor (SDES) packets are used for session control. They contain the CNAME

(Canonical Name), a globally unique identifier similar in format to an email address. The CNAME

is used for resolving conflicts in the SSRC value and to associate different media streams gen-

erated by the same user. SDES packets also identify the participant through their name, email,

and phone number. Client applications can display the name and email information in the user

interface. This allows session participants to learn about the other participants in the session. It

also allows them to obtain contact information (such as email and phone) to enable other forms of

communication (such as initiation of a separate conference using SIP). This also makes it easier

to contact a user should he, for example, have left his camera running.

If a user leaves an RTP session, they send a BYE RTCP message. Finally, Application

(APP) elements can be used to add application-specific information to RTCP packets.

3.2.2 Scaling RTP

Scaling RTP to large groups requires scaling both RTP and RTCP. The use of silence suppression

for audio enables scalability of the media transport. In normal conversations, only one or two

people can be talking at a time, providing a natural scaling factor. For video, scalability can be

provided by a similar means: only the person that is talking sends video updates. Alternatively,

a mixer can be used, and the mixer distributes video streams only for those participants currently

talking.

Scaling RTCP is more complex. Since it contains timely feedback information, it must

be sent constantly. As such, the principal difficulty in achieving RTCP scalability to large group

sizes is the rate of RTCP packet transmissions from a host. If each host sends packets at some

fixed interval, the total packet rate sent to the multicast group increases linearly with the group

size, N . This traffic would quickly congest the network, and be particularly problematic for hosts

86

connected through low-speed dialup modems. To counter this, the RTP specification requires that

end systems utilizing RTP listen to the multicast group, and count the number of distinct RTP

participants which have sent an RTCP packet. This results in a group size estimate, L computed

locally at each host. The interval between packet transmissions is then set to scale linearly with

L. This has the effect of giving each group member (independent of group size) a fair share of

some fixed RTCP packet rate in the multicast group.

Specifically, each user i in a multicast group using RTP maintains a single state variable,

the learning curve, which we denote as L(t). This variable represents the number of other users

that have been heard from by i at time t. “Heard from” means validated, as specified in RTP[2].

A participant is validated once an RTCP packet from them is received, or once two RTP data

packets have been received. The state is initialized to L(0) = 1 when the user i joins the group.

Each user multicasts RTCP reports periodically to the group. These reports contain in-

formation such as QoS feedback, user information, and messages for management of loosely

controlled multimedia sessions. In order to avoid network congestion, the total amount of RTCP

reports multicast to the group is set at 5% of the total multicast session bandwidth. The multi-

cast session bandwidth is a fixed parameter, known to all participants. It is normally advertised

through an announcement protocol, such as the Session Announcement Protocol (SAP) [68], or

can be entered manually. The session bandwidth is chosen by the session creator. To meet this

criteria, each user increases the period of their reporting as the group size increases. Specifically,

let C be desired RTCP packet interarrival time between RTCP packets from any user, computed

as the average RTCP packet size divided by 5% of the session bandwidth. Each user computes

their deterministic interval as:

Td = max(Tmin, CL(t)) (3.1)

where Tmin is 2.5 s for the initial packet from the user, and 5 s for all other packets (this allows

the initial packet to be sent quickly, to help speed up the validation process). The deterministic

interval is the target average interval between RTCP transmissions from a specific user. To avoid

synchronization, the actual interval is then computed as a random number uniformly distributed

between 0.5 and 1.5 times Td [69].

87

new interval := C * current group size estimate;
new interval := max(new interval, Tmin);
new interval := new interval * random factor;

send packet();
schedule timer(current time + new interval);

Figure 3.2: Current RTCP Algorithm

The algorithm for sending RTCP packets follows directly. Assume a user joins at time

t = 0, and that C is smaller than Tmin. The first packet from that user is scheduled at a time

uniformly distributed between 1/2 and 3/2 of Tmin (which is 2.5s for the first packet), putting

the first packet transmission time between 1.25 and 3.75 seconds. We denote this time as t0. All

subsequent packets are sent at a time tn equal to

tn = tn−1 +R(α)max(5, CL(tn−1)), (3.2)

where we have defined R(α) as a random variable uniformly distributed between (1 − α) and

(1 + α), where α equals 1/2 in the current algorithm (we generalize because α has a strong

impact on transient behavior). A pseudo-code algorithm describing the behavior upon expiration

of the interval timer is given in Figure 3.2.

3.3 Problems with RTCP Feedback

The above scaling mechanism works well for small to medium sized groups (up to perhaps a few

hundred members). However, it suffers from problems when applied to larger groups, particularly

ones whose group membership is dynamic. These problems can be classified as congestion, state

storage, and delay. We note that the problems with RTP scalability are common to any application

that uses distributed feedback. Similar problems have been observed for generating feedback for

reliable multicast [70], and for counting participants in video conferencing sessions [71].

88

3.3.1 Congestion

In many cases, the access bandwidths for users will be small compared to link bandwidths within

the network (28.8 kb/s modems, for example, can now handle multimedia RTP sessions when

RTP header compression [60] is used). We also anticipate that many multicast RTP sessions will

exhibit rapid increases in group membership at certain points in time. This can happen for a

number of reasons. Many sessions have precise start times. Multimedia tools such as vat and vic

can be automatically started by session directory tools, such as sd [72] and sdr [73], at the start

of a session. Even without automation, users are likely to fire up their applications around the

time the session is scheduled to begin. Such phenomena are common in current cable networks,

where people change channels when shows begin and end. Studies have been performed to look

at the group membership over time of some of the popular sessions on the MBone [66, 67].

These studies show exactly this kind of “step-join” behavior. The result of these step joins are

inaccuracies in the group size estimates obtained by listening to the group. Each newly joined

member believes that they are the only member, at least initially. They send RTCP packets at

their fair share of the RTCP bandwidth (which each believes is all of it). Combined with slow

access links, the result is a flood of RTCP reports, causing access link congestion and loss.

For example, consider an RTP session where the total RTCP rate is to be limited to 1 kb/s.

If all RTCP packets are 1 kbit long, packets should be sent at a total rate of one per second. Under

steady state conditions, if there are 100 group members, each member will send a packet once

every 100 seconds, and everything works. However, if 100 group members all join the session

at about the same time, each thinks they are initially the only group member. Each therefore

sends packets at a rate of 1 per second, yielding an aggregate rate of 100 packets per second, or

100 kb/s, to the group.

Congestion can also occur when a large number of users all leave a group at nearly the

same time. This is possible for the same reasons a step-join can occur. The RTP specification

includes a BYE packet, sent when a member leaves a group. There are no controls or rules on

sending these packets. So, should 500 participants leave the group at once, 500 BYE packets will

be sent at once.

89

3.3.2 State Storage

In order to estimate the group size, hosts must listen to the multicast group and count the number

of distinct end systems which send an RTCP packet. To make sure an end system is counted only

once, its unique identifier (SSRC) must be stored. Clearly, this does not scale well to extremely

large groups, which would require megabytes of memory just to track users. Alternate solutions

must be found, particularly for set top boxes, where memory is limited.

3.3.3 Delay

As the group sizes grow, the time between RTCP reports from any one particular user becomes

very large (in the example above, if there were 3000 group members, each would get to send

an RTCP packet about once an hour). This interval may easily exceed the duration of group

membership. This means that timely reporting of QoS problems from a specific user will not

occur, and the value of the actual reports is reduced.

3.4 Requirements of a Solution for IP telephony

Clearly, a range of solutions are possible for the scaling problems of RTP (our classification in

the next section helps to outline them). Such solutions vary from turning off RTCP completely,

to sending it to a specific feedback point, to adding aggregation nodes that collect, summarize,

and distribute the data. In order to choose the most effective solution, it is critical to first outline

the requirements of the solution.

Our requirements are based on our broad definition of IP telephony in the introduction.

In this definition, IP telephony covers all sorts of multimedia, real time communications between

any number of participants, from two to two thousand. From this, several requirements emerge:

• Since IP telephony endpoints can range from dumb, Plain Old Telephone System (POTS)

phone-like-appliances to special purpose computers, the solution for feedback must be sim-

ple to implement.

• Since the number of participants in an IP telephony conference can vary tremendously, the

90

solution must be appropriate and reasonable over a wide range of sizes. It is particularly

advantageous for the solution to work extremely well for small groups, work very well for

medium sizes, and gradually and smoothly become less effective, but still be useful, for

very large groups.

• Since conference sizes are dynamic, the solution cannot be based on a priori knowledge of

group sizes.

• Ideally, the solution should be backwards compatible with the existing RTP algorithms.

• Since conferences can be between members that may be geographically close or sparsely

distributed, the solution must work over a wide area network, and make no assumptions

about the distribution of the session participants throughout the network.

• The mechanism must be safe. This means that it does not introduce significant new denial

of service attacks, beyond those possible in general for any multicast application.

3.5 Taxonomizing the Solution Space

We begin by attempting to taxonomize the solution space for generating feedback for real time

QoS. Our taxonomy helps us to quickly identify possible solutions, and then evaluate them based

on our above requirements.

The mechanisms for feedback can be classified based on a tuple, with each entry in the

tuple representing a different aspect of the feedback mechanism. Each component of the tuple

represents an axis in the space of multicast feedback protocols. Each subsection below discusses

one of the axes. Broadly speaking, our axes represent answers to the questions who, what, where,

when and how.

3.5.1 Feedback Destination: Where

Where does the feedback eventually go? At one extreme, the entire set of participants in the group

can receive the feedback. This is the current operating point for RTCP. At the other extreme, a

single user (whether they are a member of the group or not) can receive the feedback. In the

91

middle are cases where only partial subsets of users receive the feedback. Selection of the subset

of recipients of feedback can be based on any number of criteria. For IP telephony, some sensible

choices are (1) only those users who send media into the session, (2) feedback from a participant

about reception from A is only sent to A (3) only those users connected via high speed access

links, (4) a network operator.

So, in summary, the feedback destination can generally be one of one, subset, or all.

3.5.2 Feedback Mechanism: How

The feedback mechanism is closely related to, but not the same as, feedback destination. It refers

to the “how” of the feedback distribution.

The feedback mechanism can be multicast, to the same group as the data was sent to.

This is useful when the feedback destination is the entire group, and is how RTCP works now.

Alternatively, the feedback mechanism can be multicast, but to a different group (perhaps one

that is administratively scoped), or to the same group but with a different TTL. This would allow

the feedback to target a subset of the receiver population or a set of network managers. Use of

such a mechanism usually requires a mapping from the feedback to the specific group or scope.

Such mappings can be dynamic (based on group size, for example), or static.

In other cases, the feedback can be sent to a unicast address. This address may be the

address of the sender, or perhaps of some separate collection station (providing feedback to a

specific user). When the address is a separate station, some means is needed to obtain this ad-

dress. This can be done by placing the address in the RTP or RTCP packets. Or, the address can

be determined through some separate state distribution protocol, such as SAP. For example, in the

reliable multicast space, LGMP [74] distributes the identity and status information of active col-

lection stations (Group Controllers) through a separate protocol. Receivers use this information

for localized self-evaluation and for selection of an appropriate collection station.

Unicast can also be used as a means for feedback to all group members or a subset therein.

A separate station (or set of stations), can act as a collection point. Receivers unicast the feedback

to the station, and the station unicasts it back to the specified set of receivers. This, of course,

requires the station to have knowledge of group participants.

92

Hybrid schemes exist as well. In particular, unicast can be used to send the feedback to a

collection station, which then distributes it to the receivers using multicast.

In summary, the set of possible feedback mechanisms includes multicast (same group),

multicast (different group), unicast, or hybrid.

3.5.3 Feedback Source: Who

Who sends feedback? There is a wide range of possibilities here. All receivers may be required

to send feedback. This is how the current RTCP implementation works. In addition, when in-

termediate servers provide aggregation of information, all receivers may be required to provide

their feedback to an aggregation station.

At the other extreme is feedback from a single member. This type of feedback is often

used in conjunction with redundant content (see Section 3.5.4).

In between are cases where a subset provides feedback. This subset can be determined in

many ways:

statistical sampling: In this case, each receiver randomly decides to send feedback. The prob-

ability that they send feedback can be set by an external entity [71], or be computed in a

distributed fashion based on some other parameters. Statistical sampling is useful in large

groups where feedback from all participants is not needed, or where the bandwidth for

feedback from all participants is too large. Note that very large feedback intervals, such

that a participant may never get around to sending feedback, effectively results in statistical

sampling.

parameterized: In this case, the receivers send feedback if they meet some kind of criteria. For

example, all receivers with loss rates exceeding 5% might send feedback, while all others

do not.

explicit selection: In this case, some external third party may explicitly select the group of re-

ceivers who should send feedback.

93

3.5.4 Feedback Content: What

What information does the feedback contain? We refer not to the actual parameters, but to the

high-level semantics it conveys.

The feedback content can be one of the following:

individualized: In this case, the content of the feedback is the reception quality, loss reports, or

other feedback as reported by individual stations. This is the case in RTCP right now.

redundant: In this case, the content of the feedback is the reception quality, loss reports, or

other feedback as reported by individual stations. However, the nature of the feedback is

that it is identical across those receivers providing the feedback. As a result, it may only

be necessary for a single receiver to actually send the feedback. An example of this case

are reliable multicast protocols where the feedback is the NAK for a specific packet. Each

participant that has not received the packet sends an identical NAK. The information is

redundant, since only one of these is needed if the retransmission is multicast. This case

also works for feedback in RTP; those receivers with similar QoS performance need not all

send reports.

aggregated: The feedback delivered to the receivers is aggregate information. It represents a

summary of the information which may have been provided by the data receivers. Use of

aggregated feedback usually implies a unicast or hybrid delivery mechanism, with inter-

mediate aggregating nodes. Placement, configuration, and communications between these

nodes can be complex. As an alternate, group participants can act as aggregators. However,

this still requires election procedures to choose the aggregators. Furthermore, the feedback

from a set to the aggregator must be limited, and therefore cannot use the same multicast

group and scope as the original request.

3.5.5 Congestion Control: When

Congestion control is an integral component of multicast feedback. Since the number of receivers

reporting feedback can be large, the potential for congestion in the network and at specific hosts

94

is large. In this section, we consider some of the congestion control mechanisms which have been

applied to help alleviate this problem.

One approach is to use periodic feedback. Periodic feedback is useful when the informa-

tion it contains is timely and needed continuously, and must be transmitted often. For scalability

purposes, when the feedback is delivered to the entire receiver population, the interval is made

to scale with the number of participants sending feedback. This requires each participant to hear

the feedback, in order to obtain a group estimate. Or, a single entity can maintain group size and

distribute it to the other participants. This is the mechanism used in RTP. When periodic feedback

is sent to specific collection stations or a subset of the population, scaling of the period may not

be needed.

In other cases, the feedback is in response to a particular event, which we call a poll. A

poll might be an explicit request for feedback. In these cases, periodic feedback is not appropriate.

To provide some amount of congestion control, receivers who wish to send feedback do not do

so immediately after the generating event. Rather, they wait some amount of time randomly

selected, and then send feedback. When a participant sees a feedback from another participant, it

cancels transmission of its own packet.

Another mechanism for congestion control, similar to the periodic approach, is to use

a token passed among the receivers. Only receivers with the token can send feedback. The

mechanism requires the establishment of a virtual ring around the receivers, and works well for

small to medium sized groups [75].

3.6 Solution Space

With our taxonomy in hand, we are now in a position to examine the potential solutions to the

feedback problem. We begin by exploring solutions that have been proposed in the literature to

date, and classifying where they fit in the taxonomy. From this point, we can examine other points

in the taxonomy to determine what other solutions might be appropriate.

95

3.6.1 Existing Solutions

A number of solutions for scaling feedback have been proposed, both in general and in the context

of RTP. These solutions include polling and summarization as general solutions, and for RTCP

specifically, they include adding summarizers to aggregate reports from regional or administrative

areas, turning off RTCP reporting entirely, TTL scoping, using separate multicast groups for

RTCP reports, and using the BYE message for QoS reporting, among others [76].

The subsections which follow discuss each of these alternatives in turn.

3.6.1.1 Summarizers

The idea of summarizers was proposed by Aboba [76]. Research by El-Marakby and Hutchison

later fleshed out the details [77]. The basic idea is to develop a tree-based hierarchy of report

summarizers. At the lowest level of the tree, session participants send receiver reports. A node,

acting as an aggregator, collects these reports, and summarizes them. These summaries are then

passed up towards the next highest node in the tree, until finally they reach the sender or some

other appropriate feedback point. The summarization is most useful when the nodes at one level

of a sub-tree see similar network performance. El-Marakby uses network hop counts to a summa-

rizer, measured through TTLs, to group hosts together in the tree. She also proposes a dynamic

scheme for building the tree.

The summarization approach introduces many issues that need to be resolved. First off,

it is still necessary to rate control the feedback. How is this done? At each level of the tree, the

rate of feedback to its parent can be constant, can scale inversely to the number of children of the

same parent, or can scale with the number of end nodes in the sub-tree rooted in the summarizer.

In addition, these summarizers must be elected, and re-elected in the case of changes in session

dynamics.

The summarizer approach appears to be quite attractive; the hierarchical nature of the

system allows for scalability, less information would need to be maintained at any given node,

and convergence times would be reduced [77]. However, the scheme has a number of drawbacks

for IP telephony:

96

1. It requires centralized processing in the summarizer. Therefore, protocols for discovering

and electing such summarizers will be required, adding additional complexity. Administra-

tive issues are introduced. Who runs these summarizers? Is there a fee? Furthermore, new

summary messages must be defined, and new behaviors for the summarizers standardized.

2. It may have no impact when group members are sparsely distributed, since the tree that

gets built can potentially be very deep but not very wide.

3. It also has no impact when group members are very densely distributed within a small

network, since the tree will end up with one node at the root, and all others as its children.

This means there will need to be significant rate controls to control feedback from the

children to the single summarizer.

4. Convergence times are only reduced if the packet sizes for the summarizers grow smaller

than the group sizes. However, if we still desire SDES information, summarization cannot

occur, and we will still have to wait a long time before learning the names of all multicast

group members.

5. It is not backwards compatible with existing RTP deployments.

6. It is overkill for small groups, which is a common case for IP telephony.

7. Its operation is unclear in the case of feedback for multiple senders.

Due to its complexity, and the fact that other congestion control mechanisms may still be

needed, we believe that summarizers are not a ubiquitously useful solution for IP telephony. In

applications such as broadcast-only media, they are more appropriate.

Table 3.1 indicates how the summarizer approach fits into our taxonomy.

3.6.1.2 Polling

A second approach, applied in the context of video session group size estimation [71] is to use

a form of polling. In this mechanism, a single polling station sends a poll request to the set

of receivers in the session. The poll contains information that allows the poller to control the

97

Axis Value
Where A single feedback collection point
How Hybrid unicast and multicast
Who All
What Aggregated information
When Not addressed by El-Marakby [77]; there are many possibilities

Table 3.1: Operating Point of Summarizers in the Feedback Taxonomy

Axis Value
Where A single feedback collection point
How Multicast
Who Sampled subset
What Individual information
When Based on poll interval of poller

Table 3.2: Operating Point of Polling in the Feedback Taxonomy

fraction of receivers that respond. The responses can contain feedback about reception quality.

By adjusting the parameters in the poll, the amount of bandwidth used can be controlled.

This general feedback mechanism is not appropriate for general purpose IP telephony.

In conferences with many senders, each of which needs feedback, the result are many indepen-

dent polls, which is wasteful. Furthermore, for large conferences, it introduces denial of service

attacks. Pollers can set the poll parameters inappropriately and cause network congestion.

Table 3.2 specifies where polling fits in our taxonomy.

3.6.1.3 Separate Multicast Groups

In the specific case of RTCP, an attractive alternative is to use a separate multicast group for

receiver reports, to which only senders subscribe. This means that receivers will not see each

others receiver reports, and the amount of network traffic is reduced. Since receivers no longer

hear from each other, they will have to receive group size estimates from the senders (who pre-

sumably will join the receiver report group). This will introduce additional propagation, queuing

and processing delays between the transmission of a receiver report and its increasing the group

98

Axis Value
Where A single feedback collection point (the sender)
How Multicast
Who All
What Individual information
When Based on period sent out by sender

Table 3.3: Operating Point of Separate Multicast Groups in the Feedback Taxonomy

size as perceived by the receivers. Analysis in future sections will demonstrate that congestion is

strongly dependent on network delays. Thus, this approach worsens congestion for the senders

(of course, the receivers will be spared).

Additional protocol structures will need to be introduced to allow the senders to inform

the receivers of the group size estimates. This means the approach is not backwards compatible.

It also introduces potential denial of service attacks, similar to the ones introduced by the polling

approach above. A malicious user can join the receiver report multicast group and send out false,

low estimates of group sizes, causing congestion for itself, but for any other receiver report group

members as well. This means that authentication mechanisms will need to be added.

Table 3.3 specifies the operating point of separate multicast groups in our taxonomy.

3.6.1.4 Event-Based Reporting

This approach is a variant on the current RTCP algorithm. Feedback is sent to the group only

when some specific event occurs, rather than periodically. These events can include (1) QoS

degradation beyond some threshold, or (2) departure or joining of a group by a participant. In

theory, this would allow feedback to occur only when needed, rather than periodically. This can

help alleviate the congestion problem. In practice, the approach has problems:

1. If joins or leaves are deemed as events, then we still have the congestion problem with

step joins. Since RTCP is also used for conveying identification information (name, email,

phone number), it is desirable to send data on join events, at least.

2. Even if receiver reports are only sent in the event of a QoS problem, congestion can still

99

Axis Value
Where All
How Multicast
Who All
What Individual information
When When a specific event occurs

Table 3.4: Operating Point of Event Based Reporting in the Feedback Taxonomy

occur. If the congestion is being caused at a link near the root of the multicast tree, nearly

all receivers will suffer loss. As a result, all users will send QoS reports back to the source.

This, of course, only exacerbates whatever problem may have been causing the QoS degra-

dation in the first place.

Table 3.4 conveys the operating point for event-based reporting in our taxonomy.

3.6.2 Additional Approaches

Based on our taxonomy, we can quickly consider additional ranges of solutions.

Choosing alternate choices for the “who” axis can introduce mechanisms that reduce the

congestion problem by reducing the number of participants that send feedback. The polling and

event-based reporting approaches take this approach. The general difficulty with this direction

is that for small groups, it is extremely desirable to have feedback from all participants. This

is because RTCP contains important participant identification information. This would seem to

argue for a solution where every member sends when the group membership is small, but a select

subset send as the group size increases. This solution works well when there is a centralized

agent coordinating the process. However, in a distributed system, it is not possible. In the dis-

tributed system, each participant maintains its own group size estimate. The estimate is obtained

by observing packets from other users. If only a subset of users send packets when the group

size goes above some threshold, the group size estimates computed by each user will decrease

(new users will also perceive the wrong group size), and each user once more begins to send

feedback. The result is an oscillatory behavior that is undesirable. Since we believe it is also

100

desirable to maintain the distributed nature of RTCP, effectively adjusting the “who” component

is problematic.

Alternate choices for the “where” axis can also reduce bandwidth usage. However, they

cannot avoid fundamental congestion problems. If all participants send feedback at the same

time, but it’s to a single location, congestion will still occur. Adjusting the “where” just means

that the congestion is in one place rather than many.

Changing the values on the “how” axes can’t address fundamental congestion problems.

These depend on the operating points of the “who”, “when”, and “where” axes. Using differ-

ing “how” values can exacerbate the problem; i.e., using multi-unicast when multicast is more

efficient.

The axes that remain are “what” and “when”. By adjusting the “what” towards summary

information rather than individual information, congestion and latency issues can be alleviated.

However, as we have discussed above, these solutions require significant additional infrastructure

that will often be unjustified.

Our approach, as a result, is to consider solutions along the “when” axis. These, funda-

mentally, reduce congestion by sending data less frequently. This improvement comes at the cost

of potentially increased latency. However, it is our opinion that reducing congestion, and main-

taining the simple, distributed nature of the feedback, is more important than reducing feedback

latency.

3.7 Reconsideration Algorithm

Our approach for solving the congestion problem is to work within the existing RTP framework.

We do not define any new functional elements or messaging, nor do we change the way in which

the basic RTCP mechanism works. Rather, we adjust the algorithm used to transmit RTCP pack-

ets, in order to reduce congestion. This approach has the advantage of being maximally compat-

ible with existing implementations. As with the original RTCP algorithm, it is fully distributed.

The feedback works very well for small groups, and with our algorithm, avoids the congestion

problem with large groups.

Our algorithm is called reconsideration [78]. The effect of the algorithm is to reduce the

101

initial flood of packets which occur when a number of users simultaneously join the group. It

therefore addresses the congestion problem, but not the state storage or delay problems. This

algorithm operates in two modes, conditional and unconditional. We first discuss conditional

reconsideration.

At time tn, as defined above in Equation 3.2, instead of sending the packet, the user checks

if the group size estimate L(t) has changed since tn−1. If it has, the user reconsiders. This means

that the user recomputes the RTCP interval (including the randomization factor) based on the

current state (call this new interval T′ = R(α)max(Tmin, CL(tn)),), and adds it to tn−1. If the

result is a time before the current time tn, the packet is sent, else it is rescheduled for tn−1 + T ′.

In other words, the state at time tn gives a user potentially new information about the group size,

compared to the state at time tn−1. Therefore, it redoes the interval computation that was done

previously at time tn−1, but using the new state. If the resulting interval would have caused the

packet to be scheduled before the current time, it knows that its interval estimate was not too

low. If, however, the recomputation pushes the timer off into the future, it knows that its initial

timer estimate was computed incorrectly, and it delays transmission based on its new timer. A

pseudo-code specification of the algorithm is given in Figure 3.3.

Intuitively, this mechanism should help alleviate congestion by restricting the transmis-

sion of packets during the convergence periods, where the perceived group sizes L(t) are rapidly

increasing.

In unconditional reconsideration, the user reconsiders independently of whether the num-

ber of perceived users has changed since the last report time. A pseudo-code description of the

algorithm is given in Figure 3.4. The RTCP interval is always recomputed, added to the last

transmission time tn−1, and the packet is only sent if the resulting time is before the current time.

Clearly, when the group sizes are increasing, this algorithm behaves identically to conditional

reconsideration. However, its behavior differs in two respects. First, consider the case where

group size estimates have converged, and are no longer changing. In conditional reconsideration,

no timer recomputation is done. But for unconditional, it is still redone. Since group sizes have

not changed, the deterministic part of the interval remains the same. However, the random factor

is redrawn each time. This means that packets will be transmitted when the recomputed random

102

new interval := C * current group size estimate;
new interval := max(new interval, Tmin);
new interval := new interval * random factor;

if ((last transmission + new interval < current time) ‖
(current group size estimate ≤ previous group size estimate)) {

send packet();
new interval := C * current group size estimate;
new interval := max(new interval, Tmin);
new interval := new interval * random factor;
schedule timer(current time + new interval);
last transmission := current time;
previous group size estimate := current group size estimate;

}
else {

schedule timer(last transmission + new interval);
previous group size estimate := current group size estimate;

}

Figure 3.3: Conditional Reconsideration

factor is smaller than the previous factor, and packets will be delayed when the recomputed ran-

dom factor is greater than the previous one. Note that since the random factor is of finite extent

(between 1/2 and 3/2), packets are guaranteed to eventually be sent. However, the result is an

average increase in the interval between RTCP packets.

The behavior of unconditional reconsideration differs during the initial transient as well.

Consider N users who simultaneously join the group at time 0. They all schedule their first RTCP

packets to be sent between t = 1.25 and t = 3.75. The users whose packets were scheduled

earliest (at a time a little bit after t = 1.25) will not reconsider with conditional reconsideration,

and will always send their packets. This is because no one else has sent any packets yet, and thus

they have not perceived the group size to have changed. In fact, because of network delays, many

users may send packets without reconsidering. Once the first transmitted packet has reached

the end systems, conditional reconsideration “kicks in”, since users will perceive a change in

group size only then. With unconditional reconsideration, those first few users do not wait for

103

new interval = C * current group size estimate;
new interval = max(new interval, Tmin);
new interval = new interval * random factor;

if (last transmission + new interval < current time) {
send packet;
new interval = C * current group size estimate;
new interval = max(new interval, Tmin);
new interval = new interval * random factor;
schedule timer(current time + new interval);
last transmission = current time;

}
else {

schedule timer(last transmission + new interval);
}

Figure 3.4: Unconditional Reconsideration

the first packet to arrive before using the reconsideration algorithm. They will all recompute

the timer. Obviously, the group size estimate hasn’t changed, but the random variable will be

redrawn. For the first few users, the random factor was initially extremely small (that’s why they

are the first few users to send). In all likelihood, when the factor is redrawn, it will be larger

than the initial factor, and thus the resulting interval will be larger. This will delay transmission

of RTCP packets for those users. As time goes on, it becomes less likely than the new random

factor will be greater than the initial one. However, by then, any RTCP packets which may

have been sent will begin to arrive, increasing the group size estimates for each user. In this

fashion, unconditional reconsideration alleviates the initial spike of packets which are present in

conditional reconsideration. These arguments are all quantified in later sections.

It is worth noting that for both conditional and unconditional reconsideration, the algo-

rithms recompute the interval yet another time once a packet is sent, in order to schedule the next

packet. The reason for this is a subtle effect on the random factor. In both algorithms, the packets

are sent conditionally based on the interval being below some threshold. If the packets are sent,

it implies a conditioning on the interval and on the random factor. As a result, the value of the

104

first random factor within the code block which sends the packets is, on average, smaller than

its unconditioned value. In order to maintain the statistical properties of the random value, we

recompute it again.

Both modes of the algorithm are advantageous in that they do not require any modifica-

tions to the current RTCP protocol structure. In fact, they operate properly even when only a

subset of the multicast group utilizes them. As more and more members of a group use the algo-

rithm, the amount of congestion is lessened in proportion. This leaves open a smooth migration

path which is absent for most of the other proposed solutions.

3.7.1 Ideal Behavior

Before considering a performance analysis of our algorithms, we need to define the “ideal” be-

havior with which to measure performance. The flood of packets caused by the current RTCP

algorithm with a step join has both good and bad consequences. Clearly, the congestion which

results is not desirable. However, the flood allows the end systems to very rapidly learn about the

group sizes and group membership, which is desirable. There is a fundamental tradeoff between

the convergence time (i.e., the time until the observed group size L(t) equals the actual group

size) and the bandwidth used to achieve convergence.

Our approach is to define the ideal behavior as the one where feedback into the group

never exceeds its specified threshold (5% for RTCP). This implies that convergence times will

grow as the group sizes grow. However, it is the most social solution, in the sense that it will

never congest the network, no matter how large the group sizes become. If we define the ideal

behavior as convergence within any amount of time that grows less than linearly with the group

size, the result is a protocol that does not scale and can eventually result in congestion.

We also consider congestion avoidance to be more important because we expect many

users to be connected via low-speed dialup lines. In that case, bandwidth is at a premium, and

it is in the self-interest of users to make the best use of it. Most users probably consider RTCP

feedback much less important than the video or audio data itself, and therefore it is important to

keep the feedback below the required 5%.

We add another dimension to the ideal behavior by defining a quantity called the effi-

105

ciency, e(t). This quantity represents, for a step join, the size of the learning curve L(t) divided

by the total number of packets injected into the multicast group. It captures both loss (which

reduces efficiency), and the capability of the algorithms we propose to make the best use of the

bandwidth available to them by first transmitting packets from users who have not yet been heard

from. The efficiency only makes sense for the convergence period; once converged, the learning

curve will stop at the group size. From then on, packets will continue to be sent, so the efficiency

as defined would decrease.

With this definition, we now state the desired ideal behavior:

1. The learning curve L(t) grows linearly at a rate of 1/C users per second, until it reaches

the group size N , at which point it becomes flat, and remains at N .

2. The efficiency e(t) is equal to one during the convergence period.

3. The bandwidth used by all feedback is always equal to 1/C packets per second during the

convergence period.

The third item is a mathematical consequence of the first two, but we state it for emphasis.

Clearly, as group sizes grow, the longer convergence times and larger RTCP intervals may

make the feedback less useful for some applications. In cases where the group sizes are known

to be large a priori, the polling solutions described below may be more desirable.

3.7.2 Simulations

We ran a number of simulations to examine the performance of the reconsideration algorithms.

The model implicit in all of our simulations and analysis is depicted in Figure 3.5. All

users are identical in their view of the network, and so we focus on the state evolution as seen

by any particular user. Each user is connected to the network via an access link of 28.8 kb/s

downstream (i.e., from the network to the user). We assume upstream links are infinitely fast.

In the downstream direction, congestion occurs because the RTCP reports from all of the other

users are being received. In the upstream direction, each user sends only his own report; thus

congestion never occurs in that direction. Therefore, since the upstream link is not critical in

106

Internet
(delay D)

Figure 3.5: Network Model

the system behavior, we assume it is infinitely fast in order to simplify analysis. It should be

noted that the asymmetry in access technologies such as ADSL are therefore beneficial for this

particular problem; they allow more downstream bandwidth to relieve the congestion.

Multicast join latencies are ignored; this is reasonable in protocols such as DVMRP [79]

since initial packets are flooded. Even in protocols like PIM [80], where explicit joins are re-

quired, the model still holds. This is because the multicast join will occur the instant the user

requests to the join the group. However, the RTCP packets will not be sent for at least 1.25 s

after such a join. This should be ample time to establish the multicast distribution tree, therefore

providing full connectivity by the time the user sends a packet.

We assume that the network introduces a delay of D seconds, where D is uniformly

distributed between 0 and 600 ms, with an average of 300 ms. We use the uniform distribution

because it simplifies our analysis, and because the results from Chapter 2 showed that RTT distri-

butions were approximately uniform over the middle parts of the delay range. The average value

represents the upper ranges of the delays we observed in our traces. However, the network delays

have a strong impact on performance of the algorithm, so we felt it important to be conservative.

Each user has buffering of 100 kB on the downstream access link. We assume all RTCP

packets are 128 bytes in size, and that the session bandwidth is 28.8 kb/s.

Figure 3.6 and Figure 3.7 depict state evolution for a single user when 10,000 users simul-

taneously join a multicast group at t = 0. The figures depict the system with no reconsideration

107

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

N
um

be
r

Time (s)

Learning Curve

L(t) Current
L(t) Conditional Reconsideration

L(t) Unconditional Reconsideration
Ideal

Figure 3.6: Learning curve, step join with N=10,000

1

10

100

1000

10000

100000

1e+06

1 10 100 1000 10000 100000

N
um

be
r

Time (s)

Cumulative Packets Sent

Packet Sent, Current
Packets Sent, Conditional Reconsideration

Packets Sent, Unconditional Reconsideration
Ideal

Figure 3.7: Total packets sent, step join with N=10,000

(the current specification), conditional reconsideration, unconditional reconsideration, and the

ideal behavior. The graphs are plotted on a log-log scale to emphasize the beginning and com-

plete evolution of the system. Figure 3.6 depicts the learning curve, and Figure 3.7 shows the total

number of packets sent to the multicast group at time t. Note that this quantity is the integral of

r(t), given that r(t) is the total packet transmission rate into the multicast group. Note the burst

108

of packets sent in the beginning by the current algorithm. Exactly 10,000 packets are sent out in a

2.5 s interval. This is almost 3000 times the desired RTCP packet rate. However, this burst is re-

duced substantially by the reconsideration mechanisms. Conditional reconsideration causes only

197 packets to be sent over a 210 ms interval, and unconditional reconsideration causes merely 75

packets to be sent over a 327 ms interval. We also observed similar improvements in the relative

number of packets transmitted, over a variety of different link speeds, delays, group sizes, and

delay distributions.

We noted that the startup burst with reconsideration was particularly disturbing when net-

work delays were deterministic instead of uniformly distributed. This is demonstrated in Figure

3.8, which looks at the cumulative number of packets sent when 10, 000 users simultaneously

join at t = 0. In all cases, the mean network delay was 300 ms, but the distribution varies. Ex-

ponentially distributed delays exhibited nearly identical performance to a uniform distribution.

Later sections will demonstrate that the spike is dependent on the amount of time until the first

packet arrives. As the number of users in the step join becomes large, the number of users who

send their packets within the first ε seconds after t = 1.25 grows large for any ε. Consider an ε

much smaller than typical network delays, say 10µs. As far as computing arrival times at end

stations, these packets can be treated as though they were all sent at the same time. The amount of

time until the first of these packets arrives at any end system is thus the minimum network delay

experienced by all of those packets. If the network delays are exponential, the expected minimum

of N exponential random variables goes to zero as N grows. The same is also true for a uniform

random variable. For a deterministic variable, this is not the case; the minimum is always the

same. Therefore, the performance is worse for network delays which are fixed.

We have also observed that the reconsideration mechanisms cause a complete pause in

packet transmissions after the initial spike. This pause (which we call the “plateau effect”) lasts

for a time proportional to the number of packets in the spike. This has both positive and negative

implications. On the plus side, it gives network buffers time to clear. However, it also causes

the send rate to deviate from our desired fixed 1/C packets per second. The phenomenon occurs

because the spike of packets in the beginning causes the system to reconsider, and not send,

all packets after the spike. A more detailed explanation of the phenomenon is given in Section

109

0

500

1000

1500

2000

2500

3000

0 100 200 300 400 500 600 700 800 900 1000

N
um

be
r

Time (s)

Cumulative Packets Sent

Uniform
Fixed

Exponential

Figure 3.8: Effect of delay distribution on transient for conditional reconsideration

3.7.3.2. However, after the spike and plateau, the packet rate behaves fairly well, sending packets

at a nearly constant rate.

We also ran simulations to observe performance in linear joins, where users join the group

gradually at a rate of γ users per second. The results are shown in Figure 3.9 and Figure 3.10.

Both plots depict the cumulative number of packets sent by all users. The simulation parameters

are identical to the above cases, except network delays are deterministic at 300 ms. The first

plot depicts conditional reconsideration, and the second, unconditional. In all cases, 2500 users

join the system, but the rate that they do so is varied. Both plots depict the step join, and joins

at a rate of 5000, 2500, and 500 users per second. The plots indicate that linear joins quickly

eliminate the initial transient of packets and the plateau period, with the reduction being better

for unconditional reconsideration.

Section 3.7.3.3 analyzes how the behavior of reconsideration changes under linear joins.

Our analysis has shown that as soon as the join rate γ drops below the group size divided by the

minimum RTCP interval, the initial bursts in the reconsideration algorithms begin to disappear,

whereas they remain for the current specification. All other aspects of the system performance

(including long term growth of L(t)) are identical to the step-join case.

110

0

100

200

300

400

500

600

0 20 40 60 80 100 120 140 160 180 200

N
um

be
r

Time (s)

Cumulative Packets Sent, Linear Join

Slope = 5000/s
Slope = 2500/s
Slope = 500/s

Step Join

Figure 3.9: Linear joins: conditional reconsideration

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50

N
um

be
r

Time (s)

Cumulative Packets Sent, Linear Join

Slope = 5000/s
Slope = 2500/s
Slope = 500/s

Step Join

Figure 3.10: Linear joins: unconditional reconsideration

3.7.3 Analysis

In this section, we present a mathematical analysis of the reconsideration mechanism. We first

consider the case where there are no network delays. This results in a differential equation which

describes the learning curve. The analysis also applies to networks with delay, but only models

the post-transient behavior of the system. However, this is sufficient to compute the post-transient

111

packet rate and system convergence times. We then extend this analysis to the case of network

delays, and derive expressions which describe the transient spikes and plateaus in the learning

curve. We also analytically demonstrate the reasons for improved performance from uncondi-

tional reconsideration, which only exist in the presence of network delays. We also consider

linear joins, deriving bounds on their approximations as step joins.

3.7.3.1 No Delay

The system we consider here is one where all of the users join the network at the same time,

t = 0. It is assumed that the network introduces neither delay nor loss, and that access links have

infinite bandwidth. The result is that when a user sends an RTCP packet, it is received by all of

the users simultaneously at the time it was transmitted.

We also assume that all users are receivers. In the model considered here, all users will

have exactly the same state (in terms of L(t)) at all times. Thus, we trace state evolution as seen

by a particular user. The user estimate has converged when L(t) = N , the number of users

actually in the group.

Whenever a packet is reconsidered, it is either sent, or it is not, depending on whether

the newly computed send time is before or after the current time. We can therefore view the

reconsideration mechanism as causing any packet to be sent with some probability Psend. In the

most general case, Psend is a function of the current time t, the time of the last RTCP report, and

the number of users observed at t, L(t). Once sent, these packets are received instantly by all

other participants. If a packet is the first RTCP packet sent by some user X (which we call an

initial packet), the result is an increase in L(t) by 1 for all receivers. Consider the evolution of

L(t) for any particular user U . For any subsequent packet received by U sent by X, L(t) at U

is unaffected. Therefore, we need only consider the value of Psend for initial packets. For these

packets, the last report time is always t = 0, so that the send probability is a function of t and

L(t) only.

If we consider some small interval of time, the change in L(t) is equal to the number of

initial packets scheduled to be sent during this interval across all N members, times the probabil-

ity of sending a packet in that interval. Based on this, we can immediately write the differential

112

equation:
dL

dt
= d(t)Psend(t, L(t)), (3.3)

where d(t) is the rate of packets scheduled for transmission during some time interval. What

remains is the evaluation of the scheduled rate d(t) and send probability Psend(t, L(t)). We first

consider the send probability.

3.7.3.1.1 Computing the Send Probability Consider an initial packet scheduled to be trans-

mitted by a user at time t. We assume a “fluid” model of packet transmissions, so that L(t) is

continuous. In this case, L(t) increases over any time interval, causing all packets to be reconsid-

ered1. At time t, the user perceives L(t) other users in the system. It thus calculates a new packet

interval, which is equal to:

T = R(α)max(Tmin, CL(t)) (3.4)

Since CL(t) is larger than Tmin most of the time, we ignore the max operator:

T = R(α)CL(t) (3.5)

Keeping in mind that the previous report time is always t = 0, the result is that the new

transmission time is T . If this time is less than the current time t, the packet is sent, otherwise, it

is not. This implies that Psend equals the probability that T is less than t. Since T is uniformly

distributed between (1− α)CL(t) and (1 + α)CL(t), we can immediately write the probability

of sending a packet:

Psend = t−(1−α)CL(t)
2αCL(t) , for (1− α)CL(t) < t < (1 + α)CL(t) (3.6)

The numerator represents the range of times in the interval widow which fall below the

current time t, while the denominator represents the total range over which the times for the

interval are selected. This is illustrated in Figure 3.11. Note that this probability only makes sense

when t is between (1 − α) and (1 + α) of CL(t). When t is to the left of this “reconsideration

window”, the probability is zero, and when t is to the right of the window, it is one.
1It is for this reason that we make no distinction between conditional and unconditional reconsideration here

113

(1−α) CL(t) (1+α) CL(t)

2α CL(t)

t

send reconsider

Figure 3.11: Computing Psend with reconsideration

An important implication of this equation is that the send probability is zero when t <

(1 − α)CL(t). This places an upper bound on the learning curve; if the learning curve should

reach this bound, no initial packets would be sent, and the curve would remain flat until it fell

back below this upper bound. We therefore define the maximum learning curve Lmax(t) to be:

Lmax(t) =
1

(1− α)C
t (3.7)

The actual learning curve L(t) is always below Lmax(t).

3.7.3.1.2 Computing the Scheduled Rate The next step is to compute the scheduled rate

d(t), which is significantly harder. Ideally, the scheduled rate at any point in time is the number

of users in the system, N , divided by the average RTCP interval size perceived by those users at

time t, namely CL(t). However, there is a delay between the time t when the users observe there

to be L(t) other users, and when packets are to be sent which were scheduled at t. On average,

this delay is CL(t). In other words, at time t, each user perceives L(t) other users. When a packet

is sent at time t, the next RTCP packet is scheduled for time t+ CL(t) on average. At that time,

the scheduled rate of packets will be N
CL(t) , and of initial packets, N−L(t+CL(t))

CL(t) . We thus have:

d(t+ CL(t)) =
N − L(t+ CL(t))

CL(t)
(3.8)

Then, we define t′ as the time for which t = t′ + CL(t′), so that:

d(t) =
N − L(t)
CL(t′)

(3.9)

Note that it is always the case that t′ < t as long as L(t) > 0. Without further assumptions on

L(t), no further simplification is possible.

114

The curves of Figure 3.6 show that when reconsideration is used, L(t) exhibits linear

behavior between roughly t = 100 and t = 9000 (thus ignoring the transient behavior in the

beginning few seconds). We therefore attempt to determine the slope a of this line based on the

differential equation given in Equation 3.3. Substituting L(t) = at into (3.3), along with our

expressions for Psend and d(t):

a =
N − L(t)
CL(t′)

1− (1− α)Ca
2αCa

(3.10)

For small t, L(t) < N , so we can ignore the L in the first term’s numerator. Thus:

2αC2L(t′)
N

a2 + a(1− α)C − 1 = 0 (3.11)

Note that since t′ < t, and L(t) is non-decreasing, L(t′) ≤ L(t). Thus, for large N and small t,

L(t′) ≤ L(t)� N , we can neglect the a2 term, and obtain the desired result:

a =
1

(1− α)C
(3.12)

Not coincidentally, this is also the slope of the maximum learning curve. The equation indicates,

therefore, that L(t) grows at its maximum rate until the approximation is no longer valid, at which

point its growth tapers off.

The point at which the approximation is no longer valid is also readily computed. It

occurs when the first term in the polynomial is no longer small. This happens when the first term

is on the order of one. Recall the precise formulation of the polynomial is:

2αC2a2L(t′)
N − L(t)

+ (1− α)Ca− 1 = 0 (3.13)

Using (3.12) as a solution for a, we set the first term in the polynomial to 1:

2α
(1− α)2

L(t′)
N − L(t)

= 1 (3.14)

Unfortunately, the recursive definition of t′ will not allow us to proceed further. As an

approximation, we assume that L(t) = L(t′). This assumption is reasonable if C � 1. If this

condition is not true, it will yield an underestimate of when the linear assumption is no longer

valid. With this assumption, the linear approximation of L(t) is valid until:

115

L(t) = N

(
(1− α)2

1 + α2

)
(3.15)

For α equal to 1/2, the implication is that L(t) will remain linear roughly until it reaches 20% of

its maximum value, and at that point it will be significantly non-linear. The period of linearity is

an appreciable fraction of time until convergence.

With a linear approximation to L(t), we can now approximate the scheduled rate d(t).

We again start with the initial definition:

d(t) =
N − L(t)
CL(t′)

(3.16)

With:

t = t′ + CL(t′) (3.17)

If we assume that L(t) = t/(1− α)C , and plug this back in, we obtain:

t = t′ +
t′

1− α (3.18)

t = t′
(

1 +
1

1− α
)

(3.19)

t = t′
(

2− α
1− α

)
(3.20)

Substituting this into Equation 3.16, we obtain:

d(t) =
N − L(t)
CL(1−α

2−αt)
(3.21)

Finally, we assume that L(t) is linear, and therefore:

d(t) =
N − L(t)
C 1−α

2−αL(t)
(3.22)

This equation is very approximate, for a number of reasons:

1. It has been obtained via linear approximations, but we are attempting to use it to model

non-linear behavior.

2. Fundamental to its definition is the concept that the delay between now, and the time when

the perceived state causes the density to be N − L(t)/CL(t) is CL(t). This is true if the

packet is sent at time t; if it is reconsidered, the delay may be less than this.

116

3. It is also assumed that the mix of initial and non-initial packets in the scheduled rate at any

point in time is uniform. This is likely not true; we expect initial packets to be scheduled

earlier than non-initial.

Despite these inaccuracies, we have observed that it gives good results in the final dif-

ferential equation, and appears to capture the density reasonably well. This can be seen by the

results in Figure 3.12. The figure depicts the experimentally observed integral of the scheduled

rate when 10, 000 users join the system at t = 02. Network delays are zero, and the links are

infinitely fast. The figure also depicts the integral of the scheduled rate as computed by analysis.

To do this, we use the numerical solution for L(t) as obtained below from the ODE, and plug it

into the formula for the scheduled rate. Of course, this is somewhat of a circular approach; but

it suffices to show that we have made a reasonable assumption. From the figure, it is clear that

the shape of the analytical solution is roughly correct, but the derivative of the analytical curve is

generally less than that of the experimental. This implies that our approximation will generally

underestimate the scheduled rate.

0

20000

40000

60000

80000

100000

120000

0 500 1000 1500 2000 2500 3000 3500 4000

nu
m

be
r

time (s)

Cumulative Scheduled Packet Rate of Initial Packets

Simulation
Analysis

Figure 3.12: Experimental vs. Analytical Scheduled Rate Integral

2We use the integral since measuring instantaneous quantities requires significant averaging, which would destroy
the shape of the curve we are looking for.

117

3.7.3.1.3 Obtaining the ODE Now, with the density and send probabilities computed, we

can write the final differential equation, which is:

dL

dt
=
N − L(t)
C 1−α

2−αL(t)
t− (1− α)CL(t)

2αCL(t)
(3.23)

This ODE allows us to compute a numerical solution, which can be compared against the

simulations. Figure 3.13 shows the learning curve, with 10,000 users joining at t = 0, for both

analysis and simulation. In the simulation, however, we take into account non-zero delays and

finite link speeds; network delays are a deterministic 300 ms, and link speeds are 28.8 kb/s. Note

that despite this change in assumptions, the analytical expression still comes extremely close to

the simulations for a large portion of the convergence period. In particular, it is very close during

the period of linearity of L(t) and less accurate afterwards. In addition, the differential equation

does not capture the behavior of L(t) for 0 ≤ t ≤ 20, where the simulated curve exhibits the

spike and plateau (this is difficult to see in Figure 3.13 because of the x axis scale).

We believe that network delays only impact the behavior of L(t) when they are on the

order ofCL(t). This is somewhat intuitive; the timescale of transmission events for any particular

user is CL(t). If network delays are much smaller than this, they are almost instantaneous as far

as sending packets goes, and therefore do not affect the system behavior. It is for this reason that

network delays only impact the learning curve during the first minute or so.

3.7.3.1.4 Computing the Level of Congestion With an understanding of the behavior of

L(t), we are now in a position to discuss the real quantity of interest: the aggregate bit rate

generated by these sources as they move towards convergence (recall that convergence is the time

when L(t) equals the actual group size N). We call this quantity r(t). Since the integral of this

quantity is the total number of packets sent, we have, as an immediate consequence:

r(t) ≥ d

dt
L(t) (3.24)

This is because L(t) always increases by one due to the arrival of an initial packet. Since

not all packets are initial, the total number of packets sent is always greater than or equal to the

learning curve.

118

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

Time (s)

Average Number of Observed Users L(t)

Simulation
Analysis

Figure 3.13: Experimental vs. analytical learning curve

Experimentally, we have observed that r(t) is actually equal to the derivative of L(t) for

a large fraction of the time until convergence. This can be seen in Figure 3.14. That figure depicts

the learning curve and the integral of the packet rate. The scenario is a step join of 10, 000 users

at t = 0, uniform network delays with a mean delay of 300 ms, and 28.8 kb/s access links. Note

how the two are exactly the same between t = 0 and t = 4000, which nearly 40% of the time

between the beginning of the run and convergence.

The reason for this lies with the reconsideration mechanism’s “favoring” of packets from

users who have not yet sent a packet (initial packets). Consider two packets, both scheduled to

be sent at some time t. One is an initial packet from user A, and the other is from user B, who

has sent a packet previously. For user A, since no packet has been sent, the last report time is at

t = 0. For user B, the last report time is at some time t∗, not equal to zero. In the latter case,

the bottom edge of the reconsideration window for user B is at t∗ + C(1 − α)L(t). Thus, the

probability of user B sending a non-initial packet at time t is:

Psendold =
t− t∗ − C(1− α)L(t)

2αCL(t)
(3.25)

This quantity is always less than the send probability for an initial packet from user A

as given in Equation 3.6. In fact, for small t, L(t) is equal to t/C(1 − α). Substituting this

into Equation 3.25, we get that the numerator of the fraction is negative, so the send probability

119

0

2000

4000

6000

8000

10000

12000

14000

16000

0 2000 4000 6000 8000 10000 12000

P
ac

ke
ts

time (s)

Relationship Between Packet Rate and Learning Curve

Learning Curve
Integral of Packet Rate

Figure 3.14: L(t) vs.
∫
r(t)

is exactly zero.3. Therefore, r(t) is exactly equal to the derivative of L(t) while L(t) is linear.

We expect it to continue to track the derivative closely even as L(t) tapers off. The result is that

reconsideration demonstrates large efficiencies, a very nice side effect.

Once L(t) has converged to N , packets are sent at a rate of 1/C with conditional recon-

sideration. With unconditional reconsideration, this rate is somewhat less; later sections explore

this issue further. Therefore, r(t) exhibits a dual-constant behavior; it starts at 1/(1−α)C , stays

there for some time, then reduces to 1/C , where it remains from then on.

3.7.3.1.5 Reconsideration as a Control Mechanism We can gain further insight into the

behavior of the reconsideration algorithm by viewing it as a control mechanism. To see this,

we can compute the send probability when L(t) exceeds the ideal t/C . Looking at the send

probability in Equation 3.6, as L(t) increases, the numerator decreases, and the denominator

increases, so the quotient decreases. Plugging L(t) > t/C into Equation 3.6:

Psend ≤ t− (1− α)t
2αt

(3.26)

Psend ≤ αt

2αt
(3.27)

3Note that plugging in L(t) = t/C(1 − α) into Equation 3.6 yields a numerator of zero, and thus a probability of
zero also. However, the send probability is zero only in the limit for N = ∞; it is slightly positive for all real cases.
This is in contrast to the send probability for non-initial packets, which is exactly zero for finite N.

120

Psend ≤ 1
2

(3.28)

Conversely, if L(t) is below t/C , the send probability is greater than 1/2. Therefore,

the send mechanism is acting as a controller, attempting to keep the learning curve as close as

possible to the ideal by adjusting the send probability. Furthermore, this behavior depends only

on the formulation of Psend, which is exact and not dependent on network delays. This implies

that this control behavior carries into real systems as well.

3.7.3.1.6 Computing the Convergence Time The final step is to approximate the conver-

gence time. Unfortunately, the precise time depends on the non-linear regime of L(t), which

we cannot capture adequately. However, we can bound the convergence time by assuming linear

behavior until L(t) equals N . Since the actual L(t) is less than this curve, the convergence time

Tc is easily bounded on the left by

Tc ≥ NC(1− α). (3.29)

This bound grows linearly with the group size, as expected.

It is possible to compute an upper bound as well. Consider the last initial packet to be

sent. Before it is sent, L(t) = N − 1. As long as the send probability is less than one, it is

possible that this last initial packet will not be sent. But, according to (3.6), the send probability

is one when t > (1 + α)CL(t). This means that the last initial packet must be sent as soon as

t = (1 + α)C(N − 1). This gives us an upper bound of

Tc ≤ NC(1 + α). (3.30)

3.7.3.2 Modeling Delay and Loss

Of course, in a real network, delays are an important concern; in fact, they are primarily respon-

sible for the transient congestion conditions seen in Figure 3.7 over the first few seconds.

In this section, we consider the reconsideration algorithm in the presence of network delay

and link bottlenecks. It is readily demonstrated that delay and link congestion have an impact

on the startup behavior of the learning curve. The result is a bouncing effect of rapid sending

121

followed by complete quiet. However, these phenomenon last for only a small fraction of the

duration of the convergence period. We quantify these anomalies, and back up the analytical

results with simulation. We also demonstrate the superiority of unconditional reconsideration in

the presence of network delays.

The transient condition present in Figure 3.7 appears to consist of two parts. In the first,

a large number of packets are initially transmitted. After this burst, there is a quiet period, the

“plateau effect”, where no packets are sent at all. After this effect subsides, packet transmission

continues at some nominally linear rate, as predicted by the equations in the previous section.

This transient phase is easily explained. At t = 0, all N users join the system. They

schedule their packets to be sent between (1 − α)Tmin and (1 + α)Tmin. At time (1 − α)Tmin,

packets begin to be sent. Assume that the network introduces a delay of D seconds. This means

that no packets will arrive at any end system until time (1 − α)Tmin + D. During these D

seconds, many packets will be sent by end-systems, causing the initial spike of packets. After

D seconds, this burst of packets will arrive. This causes a sharp increase in the perceived group

size L(t). This, in turn, increases the packet transmission interval, and moves the left hand side

of the reconsideration window well beyond the current time. The result is a complete halt in

transmissions until real time catches up with the left hand side of the reconsideration window.

This qualitative description of the system is easily quantified. For a large enough N ,

the flood of packets starting at time (1 − α)Tmin will saturate the access links D seconds later,

independent of whether conditional or unconditional reconsideration is used. While the links

remain saturated, packets arrive at a continuous rate at the link speed, which we denote as m

packets per second. We can therefore express the time of the nth packet arrival by

tn = (1− α)Tmin +D +
n

m
. (3.31)

The arrival of the nth packet causes L(t) to increment by one, so that if n packets have arrived

by tn, L(tn) = n. We can therefore substitute n in the above equation with L(t):

L(t) = m(t− (1− α)Tmin −D) (3.32)

The result is a rapid linear increase in L(t), well beyond its maximum as given in Equation 3.7.

When the learning curve exceeds this maximum, all sending will stop. Call this stopping time

122

tstop. It is the time at which the left hand side of the reconsideration equals the current time:

(1− α)CL(tstop) = tstop (3.33)

tstop = (1− α)Tmin +D +
(1− α)Tmin +D

(1− α)Cm− 1
(3.34)

We can then substitute tstop into Equation 3.32 and solve for the number of packets which have

arrived up to tstop, nstop = L(tstop):

nstop =
(1− α)Tmin +D

(1− α)C − 1/m
(3.35)

The next step is to determine the number of packets sent by all participants by time tstop. This

quantity depends on whether the reconsideration mechanism is conditional or unconditional. We

first look at conditional.

3.7.3.2.1 Number of Packets Sent for Conditional Reconsideration The number of packets

sent by time tstop for conditional reconsideration, nsc, consists of two terms nsca and nscb. Before

the arrival of the first packet (at time (1− α)Tmin +D + 1/m), all packets scheduled to be sent

are actually sent, since no users have observed a change in the group size estimate L(t) (which

would activate the reconsideration mechanism). The number of packets sent is then the density of

packets scheduled to be sent (which is N/2αTmin) times the amount of time until the first packet

arrives. We call this quantity nsca, and it is:

nsca =
N

2αTmin

(
D +

1
m

)
(3.36)

Once the first packet arrives, reconsideration kicks in, and not all packets will be sent.

Each will be sent with some probability, P . Unfortunately, this is not the same probability Psend

as defined in Equation 3.6. That equation ignored the max operator, assuming L(t) was large

most of the time. This is not true in the very beginning, where it takes a few packets to increase

CL(t) beyond Tmin. We assume that once enough packets have arrived to do this, the result will

be to move the left hand side of the reconsideration window ahead of the current time (this is true

when D < C). In other words, we assume the left hand side of the reconsideration window is

always at (1− α)CTmin until tstop.

123

With this in mind, the send probability between the arrival of the first packet and tstop is

given by:

Psend =
t− (1− α)Tmin

2αTmin
(3.37)

The number of packets sent is given by the integral of the scheduled packet rate times the send

probability from time (1− α)Tmin +D + 1/m to the stopping time:

nscb =
∫ tstop

(1−α)Tmin+D+1/m
d(t)Psenddt (3.38)

Since the scheduled rate d(t) is N/2αTmin between (1 − α)Tmin + D + 1/m and tstop, the

number of packets sent is obtained by:

nscb =
∫ tstop

(1−α)Tmin+D+1/m

N

2αTmin
t− (1− α)Tmin

2αTmin
dt (3.39)

This integral results in a growth in the number of sent packets as t2 until complete cutoff at tstop.

The solution to the integral is:

nscb =
N

8α2T 2
min

((
(1− α)Tmin +D

(1− α)Cm− 1
+D

)2

−
(
D +

1
m

)2
)

(3.40)

And the total number of packets sent, using conditional reconsideration, during this transient

spike is:

nsc = nsca + nscb (3.41)

These analytical results are compared with simulation in Figure 3.15. The figure displays

the cumulative number of packets sent for a step join. For the simulation, 100,000 users join the

system at t = 0. Network delays are deterministic and equal to 300 ms, and access link speeds

are 28.8 kb/s. The plot shows only the initial transient. The linear and then t2 behavior is clear

from the simulation. The horizontal line labeled nsc1 represents the quantity nsca as predicted

by our analysis, and the line labeled nsc represents the quantity nsc as predicted by our analysis.

Note that our analysis predicts these quantities quite well. The analysis also predicts that sending

will stop at tstop = 1.72s, which agrees with the simulation. Also note that the number of packets

sent is dominated by the nsca term.

124

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1 1.2 1.4 1.6 1.8 2

N
um

be
r

Time (s)

Cumulative Packets Sent

Conditional
nsc1
nsc

Figure 3.15: Transient with Conditional Reconsideration

3.7.3.2.2 Number of Packets Sent for Unconditional Reconsideration For unconditional

reconsideration, the number of packets sent during the transient (nsu) is different. In the con-

ditional case, the total consisted of two parts; one before the arrival of the first packet (as the

reconsideration mechanism had not “kicked in” yet), and one after. In the case of unconditional,

we do not need to wait for the arrival of a packet for the mechanism to activate. Therefore, the

number of packets sent is given by an equation similar to that for nscb above. It is the integral of

the scheduled rate, times the send probability. In this case, the integral is between (1−α)CTmin

and tstop, instead of just between the arrival of the first packet and tstop. The number of packets

sent for unconditional is therefore:

nsu =
∫ tstop

(1−α)Tmin

N

2αTmin
t− (1− α)Tmin

2αTmin
dt (3.42)

Solving, we obtain:

nsu =
N

8α2T 2
min

(
(1− α)Tmin +D

(1− α)Cm− 1
+D

)2

(3.43)

This quantity is small compared to nsca for conditional reconsideration, thus the improved

performance. These results are compared with simulation in Figure 3.16. The simulation model

is identical to that in Figure 3.15, except unconditional reconsideration is used. As the plot

indicates, only the t2 behavior is present here. The horizontal line labeled nsu indicates the value

125

of nsu as predicted by our analysis. The total number of packets sent during the transient is much

reduced compared to conditional reconsideration (almost by a factor of seven), and reasonably

well predicted by our analysis.

0

500

1000

1500

2000

2500

3000

1 1.2 1.4 1.6 1.8 2

N
um

be
r

Time (s)

Cumulative Packets Sent

Unconditional
nsu

Figure 3.16: Transient with Unconditional Reconsideration

3.7.3.2.3 Duration of Plateau Period The next step is to determine the duration of the plateau

period. Packet sending will start again when the current time catches up with the left hand side

of the reconsideration window, which will have quickly advanced to (1−α)Cnsc for conditional

reconsideration, and (1 − α)Cnsu for unconditional reconsideration. We therefore define tstart

as the time at which sending of packets begins again. We have, for conditional reconsideration,

tstartc = (1− α)Cnsc, (3.44)

and for unconditional reconsideration,

tstartu = (1− α)Cnsu. (3.45)

For conditional reconsideration, if we assume nsc ≈ nsca, we obtain

tstartc =
C(1− α)N

2αTmin

(
D +

1
m

)
, (3.46)

126

Conditional Unconditional
Group Size N nsent Tplat nsent Tplat

1000 143 49 s 18 5 s
10000 1430 506 s 178 61 s
100000 14305 5083 s 1784 632 s

Table 3.5: Transient Behavior for Various Group Sizes

and for unconditional reconsideration,

nsu =
(1− α)CN
8α2T 2

min

(
(1− α)Tmin +D

(1− α)Cm− 1
+D

)2

. (3.47)

The duration of the plateau period itself is given by

Tplat = tstart − tstop. (3.48)

The following table lists the values of the parameters derived above for various group

sizes. In all cases, α = 1/2, Tmin is 2.5 s, C is 0.711 s, and D is 300 ms. The unconditional

mechanism provides clear gains in terms of reducing the number of packets sent during the tran-

sient, and the duration of the plateau effect.

3.7.3.3 Linear Joins

The model for the step-join was motivated by applications where the user population joins a

multicast group in response to some synchronous event, such as a television program or a session

announcement. However, due to a variety of real world factors, users will not really join the

group at exactly the same time. Instead, their joins are likely to be scattered, perhaps uniformly

distributed over some short interval of time. The result would be that the group membership

would grow linearly in time until reaching its peak, as opposed to occurring in a single step.

Because of this, it is critical to determine the impact of linear joins on our assumptions and

on the performance of the reconsideration algorithms. In this section, we consider the modeling

of the system where users join the group in a linear rate. Our goal will not be an exact solution

of any equations of constants, but rather identification of transition points where linear behavior

appears as a step.

127

What differentiates the linear join from the step join is the initial shape of the scheduled

rate d(t). In the case of the step join, the scheduled rate of packets is flat between (1 − α)Tmin

and (1 +α)Tmin. During this time, it is equal to N/2αTmin. In the case of linear joins, however,

we would not expect the scheduled rate to be flat. Instead, we expect it to increase until it reaches

a peak, and then to decrease from there.

Consider the computation of the scheduled rate at some time t. Since we are only in-

terested in the shape of the scheduled rate for small t, we assume that d(t) is only governed by

initial packets, and not by packets that have been reconsidered or sent previously. The equations

presented above dealt with the shape of the scheduled rate during this period of time.

The scheduled rate at t is a function of users who join the system between times t− (1 +

α)Tmin and t − (1 − α)Tmin only. For a user who joins the system during this interval, the

probability that they actually schedule their packet to be sent in an infinitesimal window around

t is dt/2αTmin . Therfore, if we define dJ/dt to be the increase in the number of users at time

t (so that J(t) is the total number of users who have joined up until time t), we can obtain the

scheduled rate directly by integration:

d(t) =
∫ t−(1−α)Tmin

t−(1+α)Tmin

dτ

2αTmin
dJ

dτ
(3.49)

d(t) =
J(t− (1− α)Tmin)− J(t− (1 + α)Tmin)

2αTmin
(3.50)

When J(t) = Nu(t), i.e., a step join of N users at t = 0, the above equation correctly

defines d(t):

d(t) =




0, t < (1− α)Tmin
N

2αTmin
, (1− α)Tmin ≤ t ≤ (1 + α)Tmin

(3.51)

The behavior of d(t) after t = (1+α)Tmin depends on the reconsideration algorithm, as discussed

in previous sections.

For a linear join, we have the following definition for J(t):

J(t) =



γt, t < N

γ

N, t ≥ N
γ

(3.52)

128

We can substitute this into Equation 3.49, and then obtain the solution for d(t). The solution

differs depending on the relationship between N/γ and 2αTmin. When N/γ < 2αTmin, we

obtain:

d(t) =




0, 0 ≤ t < (1− α)Tmin
γ(t−(1−α)Tmin)

2αTmin
, (1− α)Tmin ≤ t < (1− α)Tmin + N

γ

N
2αTmin

, (1− α)Tmin + N
γ ≤ t ≤ (1 + α)Tmin

N−γ(t−(1+α)Tmin)
2αTmin

, (1 + α)Tmin ≤ t < (1 + α)Tmin + N
γ

(3.53)

This somewhat complicated equation actually describes a trapezoid. The height of the trapezoid is

N/2αTmin, the top has a width of 2αTmin−N/γ, and the bottom has a width of 2αTmin+N/γ.

This is somewhat intuitive. In the case of the step join, the scheduled rate was a rectangle, with

the same height as this trapezoid. The affect of the linear joins is to cause the rectangle to bend

in on itself, forming a trapezoid. We note that in the case above, the height still remained fixed at

N/2αTmin.

When N/γ is greater than 2αTmin, we obtain the following solution for d(t):

d(t) =




0, 0 ≤ t < (1− α)Tmin
γ(t−(1−α)Tmin)

2αTmin
, (1− α)Tmin ≤ t < (1 + α)Tmin

γ, (1 + α)Tmin ≤ t < (1− α)Tmin + N
γ

γ − γ(t−((1−α)Tmin+ N
γ

))

2αTmin
, (1− α)Tmin + N

γ ≤ t < (1 + α)Tmin + N
γ

(3.54)

This even more complex looking equation also describes a trapezoid. Here, however, the height

of the trapezoid is equal to γ, and the slopes of the sides are equal to γ/2αTmin. As the slope

of the linear joins decreases, the trapezoid flattens out and grows wider. This makes sense; the

lower the slope of the linear join, the less of a “step” the join becomes, and the more spread out

the initial packets from these users become.

With these two equations, we can now look at the size of the initial spike of packets. We

first consider conditional reconsideration. In the case of the step join, the dominant cause of the

initial flood was the nsca term. This term essentially represented the product of the scheduled

packet rate times the amount of time until the reconsideration mechanism kicks in (roughly D +

1/m). The more general formulation of this quantity is:

nsca =
∫ (1−α)Tmin+D+ 1

m

(1−α)Tmin

d(t)dt (3.55)

129

We can therefore plug either of the two equations for d(t) (Equation 3.54 or Equation

3.53) into this integral and obtain the number of packets sent. For the case of rapid linear joins

where N/γ � 2αTmin, the first definition of d(t) applies. Furthermore, if N/γ � D, the

integral above will mostly be over the flat region where d(t) = N/2αTmin, and the result will be

nearly the same as for a step join. This allows us to define an important breakpoint; linear joins

appear as step joins as long as γ � N/D. Below this, they begin to cause less transient spikes.

As the slope of the joins decrease, we reach the point where γ < N/2αTmin and thus the

second definition of d(t) applies. Consider the case where D + 1/m < 2αTmin (since Tmin is

on the order of seconds, this is a reasonable assumption for even the slowest of access links). The

integral of Equation 3.55 is then over only the linear region of d(t) which makes up the left side

of the trapezoid. With a change of variables, the integral becomes:

nsca =
∫ D+ 1

m

0

γt

2αTmin
dt (3.56)

nsca =
γ

4αTmin

(
D +

1
m

)2

(3.57)

This is a substantial reduction in the number of packets sent. Furthermore, the size of the plateau

is linearly related to the number of packets sent before tstop, as given by Equations 3.44 and 3.48.

If we conservatively approximate tstop as 0, we can get an upper bound on the duration of the

plateau for linear joins:

Tplat =
(1− α)Cγ
4αTmin

(
D +

1
m

)2

(3.58)

Note that this quantity is always less than the case of a step join. Thats because in this case,

γ < N/2αTmin and D + 1/m < 2αTmin.

In the case of unconditional reconsideration, the number of packets sent is similar to that

for conditional. The difference is that we must incorporate the send probability into the integral

for the number of transmitted packets. The resulting integral is given by:

nsu =
∫ tstop

(1−α)Tmin

d(t)
t− (1− α)Tmin

2αTmin
dt (3.59)

The plateau is proportional to nsu, as in the conditional case. We do not compute an explicit

solution, but note that the change of d(t) from flat to linear will cause nsu to be proportional to

130

the cube of the network delays. This too is also a reduction from the value in the case of the step

join.

The conclusion, therefore, is that linear joins reduce substantially the initial burst of pack-

ets sent when reconsideration is used, when the slope of the linear join is less than N/2αTmin.

This result is demonstrated in Figure 3.9. The plots depict the cumulative number of

packets sent by all users. In all four cases, a total of 2500 users join the system. The network

delays are a fixed 300 ms, access link speeds are 28.8 kb/s, network access buffers are 100 kB,

and conditional reconsideration is used. Three of the plots depict linear joins of varying slope,

and the fourth is a step join, In the case of the 5000 users/s linear join, the above equation predicts

that nsc is around 112 packets, it is roughly 140 in the simulation. For a slope of 2500/s, theory

predicts 56, and the simulation shows around 75. For a slope of 500/s, the theory predicts 12

packets, and the simulation indicates around 25. In terms of the duration of the plateau’s: in the

case of 5000 users/s linear join, the equation predicts 40 s, and the simulations show 58 s. For a

slope of 2500/s, the theory predicts 20 s and the simulations show 28 s. For a slope of 500/s, the

theory predicts 4 s and the simulations show 8 s. It is interesting to note that for slopes even as

large as 500 users per second, the initial transients have almost completely disappeared.

The same simulation was run using unconditional reconsideration. The results are plotted

in Figure 3.10. In this case, a join rate of 5000 users per second results in a spike of 30 packets

and a plateau of around 4 s, almost negligible. The size of the spike and the plateau are reduced

even further as the join rate falls below 5000 users per second.

The conclusion is that linear joins significantly reduce the initial transient spike and

plateau period. This is especially true for unconditional reconsideration, which exhibits a spike

and plateau for only the most extremely sharp linear join rates.

3.7.3.4 Steady State Behavior

It is important to consider the behavior of the reconsideration algorithms when the size of the

group has reached a steady state. The ideal behavior is for the total send rate of the group to be

1/C RTCP packets per second, equally divided among all users.

There are two situations which can be reasonably deemed as steady state. The first of

131

these is a group size which remains exactly fixed. However, in real systems, users come and go,

so a second definition of steady state is a group whose membership oscillates slightly about some

large value.

In the first scenario, conditional reconsideration will behave exactly as the system with-

out reconsideration. Since the group size has not increased since the last packet transmission, the

reconsideration mechanism will not be activated at all. However, with unconditional reconsidera-

tion, transmissions are always reconsidered, even when steady state has been achieved. The result

of this will be an increase in the average interval for each group member, and thus a reduction in

the overall send rate.

Figure 3.17 depicts the steady state packet rate when 10, 000 users join the system at time

0. The graph depicts the average packet rate (averaged over 100 seconds), from t = 5000 to

t = 100, 000. Lines are given for unconditional reconsideration, conditional reconsideration, no

reconsideration, and the ideal packet send rate. Note that both conditional reconsideration and

no reconsideration operate perfectly, sending packets at 1.4 packets per second (5% of 28.8 kb/s

divided by 1 kB is 1.4 packets/s). On the other hand, unconditional reconsideration converges to

a lower send rate, around 1.149 packets per second.

0

0.5

1

1.5

2

2.5

3

3.5

4

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
ac

ke
ts

/s

time (s)

Send Rate

Conditional
Unconditional

None
Ideal

Figure 3.17: Steady State RTCP Packet Rate

Normally, the RTCP packets are sent with an interval which is between 1/2 and 3/2 of

132

the deterministic interval. With unconditional reconsideration, an initial interval between 1/2 and

3/2 of the deterministic interval is chosen randomly. Then, when it is time to send the packet, a

second interval, between 1/2 and 3/2 of the same deterministic interval, is chosen. If the second

is greater than the first, a third is chosen, and so on, until an interval is chosen which is less than

the current. When this happens, the packet is sent.

We can represent this process mathematically as follows. Let xi be a random variable

uniformly distributed between 0 and 1. First, x0 is chosen, and then x1. If x1 < x0, we assign y

to x0, and the process terminates. Otherwise, we draw x2, and if x2 < x1, assign y = x1, and the

process terminates, etc. The problem is to determine the distribution of y.

The approach we will use is due in large part to Daniel Rubenstein, and proceeds as

follows. We first examine the problem where the xi are discrete, taking on values between 1 and

M . We will label discrete random variables with a hat. We then take various limits to relate the

distribution of ŷ to y. The probability that ŷ equals some value, say n, is the probability that we

chose i random variables before n which were in order, then we chose n, and then we chose a

number less than or equal to n, summed over all possible i. This can be expressed as:

p(ŷ = n) =
n−1∑
i=0


 n− 1

i




M i

1
M

n

M
(3.60)

The combinatorial represents the number of different ways i random variables less than n can

be chosen such that they are ordered. The second term, 1/M , then represents the probability of

choosing x̂ = n next, and then the final term represents the probability of choosing x̂ less than or

equal to n.

We can collapse this equation significantly by noting that the combinatoric and the 1/Mi

term can be seen as the binomial expansion of a polynomial:

p(ŷ = n) =
n

M2

(
1 +

1
M

)n−1

(3.61)

Next, we convert this to a cumulative distribution:

p(ŷ ≤ y0) =
y0∑
n=0

n

M2

(
1 +

1
M

)n−1

(3.62)

133

We define R as 1 + 1/M , so that:

p(ŷ ≤ y0) =
1
M2

y0∑
n=0

nRn−1 (3.63)

We can then compute this sum by expressing as the sum of the derivative of a more manageable

function:

p(ŷ ≤ y0) =
1
M2

d

dR

y0∑
n=0

Rn (3.64)

Computing the sum:

p(ŷ ≤ y0) =
1
M2

d

dR

1−Ry0+1

1−R (3.65)

And then taking the derivative:

p(ŷ ≤ y0) =
1
M2

1
(1−R)2

[
1− y0Ry0 −Ry0 + y0R

y0+1
]

(3.66)

Substituting back in R = 1 + 1/M :

p(ŷ ≤ y0) = 1 + y0

(
1 +

1
M

)y0 [1
M

]
−
(

1 +
1
M

)y0
(3.67)

This ŷ takes on discrete values between 1 andM . We would like to change to a distribution which

takes on values between 0 and 1, say ẑ:

p(ẑ ≤ z0) = p(ŷ ≤Mz0) (3.68)

Substituting in:

p(ẑ ≤ z0) = 1 + z0

(
1 +

1
M

)z0M
−
(

1 +
1
M

)z0M
(3.69)

Now, we take the limit as M goes to infinity, and equate this to the distribution of the actual y we

are looking for:

lim
M→∞

p(ẑ ≤ z0) = 1 + z0e
z0 − ez0 = p(y ≤ z0) (3.70)

We can finally take the derivative and get the pdf for y:

p(y = y0) = y0e
y0dy0 (3.71)

The mean of this quantity is e− 2.

The implication for unconditional reconsideration is that the interval is not uniform be-

tween 1/2 and 3/2 of the deterministic interval, but instead distributed as (y − 1/2)e(y−1/2)

134

between 1/2 and 3/2. Instead of the mean being equal to the deterministic interval, the mean is

now equal to 1.218 times the deterministic interval. This causes a reduction in the total packet

rate by 1− 1
e−3/2 , or 18%.

When we examine behavior in the second form of steady state (that is, small oscillations

in the user population about the group size), the results are slightly different, and are depicted in

Figure 3.18.

0

0.5

1

1.5

2

2.5

3

3.5

4

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

P
ac

ke
ts

/s

time (s)

Send Rate

Conditional
Unconditional

None
Ideal

Figure 3.18: Oscillating Steady State RTCP Packet Rate

As expected, the behavior for the no-reconsideration case is unchanged, and ideal. Fur-

thermore, the unconditional case is unaffected. This is because the slight oscillations cause only

a few more or less packets to be sent, resulting in no effect on the overall packet rate. For con-

ditional reconsideration, the “churning” in user population causes reconsideration to occur for

around 1/2 of the packets scheduled. The result is that the packet rate is halfway between uncon-

ditional and no reconsideration.

3.7.3.5 Fairness

Another important issue to look at is the impact of the reconsideration algorithms on fairness. We

define fairness as the ability of the algorithm to distribute the RTCP packet rate equally among

all group members. Quantitatively, we can measure fairness by computing the coefficient of

135

variation in Zt, where Z(t) is defined as the total number of packets sent from any user up until

time t, divided by t.

The original RTCP algorithm is extremely fair, and we do not anticipate deviation from

this as a result of either conditional or unconditional reconsideration. This intuition was demon-

strated with simulations, the results of which are presented in Figure 3.19. The figure presents

the time evolution of the coefficient of variation of Z(t) for three cases: no reconsideration, con-

ditional reconsideration, and unconditional reconsideration. The system which was simulated

consists of 1000 users simultaneously joining at time 0. Access links are 28.8 kb/s, network

delays are uniform between 0 and 600 ms, access buffers are 100 kB, and occasional users join

and leave the system, causing slight oscillations in group size, after time 1000 s. As the graphs

indicate, the fairness is excellent in all three cases, with unconditional reconsideration actually

exhibiting better fairness than the other algorithms.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 20000 40000 60000 80000 100000

co
ef

f

time (s)

Coefficient of Variation in Packets Sent

Conditional
Unconditional

None

Figure 3.19: Coefficient of Variation of Packets Transmitted

3.7.3.6 Single User Joins Late

We present in this section an analysis of a different scenario using the mathematical tools devel-

oped in the past section. Consider a large group of N users, all of which have already converged

to L(t) = N . At some point in time, a new member joins the group. We are interested in de-

136

termining how long this member takes to converge, and how many packets he will emit until

convergence.

Again, we ignore network delays and losses. The first step is to compute the learning

curve for the new member. Since everyone else has already converged, the aggregate send rate

of feedback is 1/C . Each packet will be initial as far as the new member is concerned, so his

learning curve increases as 1/C as well. We therefore have

L(t) = t/C. (3.72)

The next step is to compute the times of packet emissions. The quantity depends on whether

reconsideration is being used. We consider the current algorithm, with no reconsideration, as it is

analytically tractable.

If tn was the time of the last packet emission, the user will schedule the next one based

on the learning curve at time tn, so that:

tn+1 = tn + CL(tn) (3.73)

Plugging in the value of L(t) from (3.72):

tn+1 = 2tn (3.74)

This equation is easily solved recursively:

tn = t02n (3.75)

The number of packets sent can be solved by setting tn equal to the convergence time, which is

CN , and solving for n:

n = t0 log2CN (3.76)

On average, the time of first emission is Tmin, which is 2.5 s. Thus:

n = Tmin log2 CN (3.77)

When reconsideration is turned on, the convergence time is unaffected, but the number of packets

emitted by the user during the convergence period is reduced. To see this, we compute Psend

from Equation 3.6, using L(t) = t/C . The result is that:

Psend =
1
2

(3.78)

137

Unfortunately, an analytical solution to the number of packets sent is intractable. However, the

presence of the Psend = 1/2 in the system guarantees that fewer packets are sent than without

reconsideration.

3.8 BYE Reconsideration Algorithm

The reconsideration problem of the previous section deals very well with the congestion problem

that is caused by many users simultaneously joining a group. However, a similar problem happens

when many users simultaneously leave a group. Since an RTP client sends an RTCP BYE packet

when it leaves the group, this causes a flood of BYE packets, which congests the network. We

refer to this as the BYE flood problem. Users can be expected to leave a group simultaneously for

much the same reasons they might join simultaneously, namely an automatic leave as a result of

the end of the session (as indicated in the Session Description Protocol (SDP) [81] description of

the session), or because the “show” is over, and the users manually exit their applications.

A number of aspects of the BYE flood problem make it different than the simultaneous

join problem. These must be taken into consideration when designing an algorithm to reduce the

flood. We therefore state the goals of the BYE flood prevention algorithm as follows:

• Users often terminate their applications just after leaving the session. The algorithm must

be aware of this possibility, and define the appropriate behavior if an application decides to

terminate.

• The algorithm should behave gracefully; when very few users are leaving the group simul-

taneously, users should generally be allowed to send their BYE packets right away. It is

only in the presence of a large number of BYE packets that the algorithm should “kick in”,

and force users to hold back on sending their BYE packets.

• The algorithm should be simple, requiring minimal computation and storage.

We propose an algorithm called BYE reconsideration to accomplish these goals. The

algorithm operates much like standard reconsideration (which we also refer to as forward recon-

sideration). However, instead of counting other users, and using the resulting count as a multiplier

138

for the packet transmission interval, the client counts BYE packets, and uses the number of BYE

packets received thus far as the multiplier for the interval. The operation of the algorithm is as

follows.

At some time tl, the user decides to leave the session. The application first checks to

see if it has ever sent an RTCP packet. If it has not, the application must not send a BYE packet.

Instead, it should leave the session silently. Without having sent an RTCP packet, the BYE packet

provides no useful information. Next, the application checks to see if the group size is less than

some threshold, Bt (a value of 50 seems reasonable). If it is, the application may send a BYE

packet immediately, and then leave the session. For small groups, BYE packets are of significant

value (for loose session management), and sending them immediately is quite important. Since

the group contains only a small number of participants, the flood of packets is limited.

It is possible that a user has a low group size estimate if they leave a session quickly

after joining it. If this session is large, and there are many users coming and going fairly quickly

(typical of a channel surfer), it might appear that this can cause a steady flow of BYE packets.

However, if these clients implement the forward reconsideration algorithms, they generally will

have never sent an RTCP packet. This is because the new users’ RTCP packet transmission will

be constantly reconsidered, as the new user will be receiving RTCP packets at a steady rate from

other users already in the group. This constant reception of packets will cause the new user to

see a steady growth in the group size, causing its own RTCP packet transmission to be pushed

into the future. Since a user who never sends an RTCP packet cannot send a BYE packet, this

will generally cause these “channel surfers” to neither send RTCP SDES or RR information, nor

a BYE packet.

If the user has sent an RTCP packet previously, and the group size exceeds Bt, the appli-

cation computes a time interval T as:

T = R(1/2)max(Tmin, nl ∗ C) (3.79)

Where Tmin is 2.5 s, C = p/(bw ∗ .05), R(1/2) is a random variable uniformly distributed

between 1/2 and 3/2, p is the average size of all BYE packets received thus far, and bw is the

session bandwidth. nl is the number of users that have sent a BYE packet since the user decided

to leave the session. It is initialized to 1. The average packet size is computed using the same

139

exponential weighted average filter used to compute the average RTCP packet size in the RTP

specification [2]. The value is updated through the filter every time a BYE packet is received or

transmitted (not when it is reconsidered).

The user then schedules the BYE packet to be sent at time tl + T . Between tl and this

time, the user increments nl for each BYE packet that is received. In this fashion, nl counts the

number of BYE’s from other users since deciding to leave the session.

When time tl arrives, the user recomputes T according to the previous equation (including

redrawing the random factor). If tl+T is less than the current time, the BYE packet may be sent.

If tl+T is more than the current time, the BYE packet transmission is rescheduled for time tl+T .

At that time, the computation and comparison are repeated. All along, nl is incremented for each

BYE packet received.

A BYE packet which is from an SSRC which already sent a BYE (a duplicate) is ignored.

Furthermore, the application should not increment nl if it receives a BYE from a user which has

never sent an RTCP packet. Under normal situations, an application should never send a duplicate

BYE packet, or send a BYE if an RTCP packet was never sent. However, a malicious user may

send many BYE packets. If this check were not made, these BYE’s would cause the variable nl

to increase, and effectively prevent any other user from sending a BYE.

The effect of this algorithm is to restrict the BYE packet transmission rate to at most an

additional 10% of the session bandwidth (assuming a very large simultaneous leave). At the same

time, if only a few users are leaving the group (even for a large group), they will get to send their

BYE packets in a timely fashion. This meets the design objectives described in the beginning of

the section.

We ran numerous simulations to verify the performance of the algorithm. Even with as

many as 10,000 users simultaneously leaving the session, the BYE reconsideration algorithm

maintained the BYE transmission rate at 10% of the session bandwidth. This is demonstrated in

Figure 3.20, which depicts the cumulative number of RTCP packets (BYE and others) sent to the

multicast group over time. At time 10,000, almost all of the users leave the group. The top line

depicts the performance without BYE reconsideration, where some 10,000 BYE packets are sent

all at once. The lower curve shows performance for BYE reconsideration. Note how there is only

140

a small increase in packet transmission rates.

In fact, the increase in packet transmission rates are readily quantified. Since BYE re-

consideration basically uses forward reconsideration, but with BYE packets, the upper bound on

the learning curve for forward reconsideration is also an upper bound on the BYE packet rate for

BYE reconsideration. Thus, the BYE rate is limited to 1
(1−α)C . For the normal case of α = .5,

BYE packet rates are limited to 2/C , twice the desired rate.

0

5000

10000

15000

20000

25000

0 5000 10000 15000 20000 25000

nu
m

be
r

time (s)

Cumulative Packets Sent

Current
BYE Reconsideration

Figure 3.20: BYE Reconsideration Performance

3.9 Reverse Reconsideration

We have observed a secondary effect when many users simultaneously leave a group. There are

many applications where not all of the users will leave, and some will stick around. An example

is a distance learning application. There are perhaps several hundred students in the class. When

the class ends, most of the students leave at about the same time. However, some stay behind to

talk with the professor.

We have observed that rapid leaves can cause the remaining users to time each other out.

It can take a significant amount of time for the users to return. This implies that each user will not

see the other users, which is undesirable for the post-class discussion scenario just mentioned.

141

3.9.1 Quantifying the Problem

The difficulty is related to the way timeouts are handled. In the current RTP specification [2], a

user is timed out if they have not sent an RTP or RTCP packet within the last five RTCP intervals.

In dynamic groups, the interval itself is dynamic. As many users leave a group, their BYE packets

cause the group size estimate to rapidly decrease. This, in turn, decreases the timeout interval. If

the number of users who leave the group is sufficiently large, the timeout interval may decrease

so much that the remaining users will time out. We call this phenomena premature timeouts.

BYE Flood

RTCP Packets

User: 0 1 2 3 4

Original Timeout Window

Timeout Window after Flood

Figure 3.21: Premature Timeout Problem

The problem is depicted graphically in Figure 3.21. There are six users in the system.

The chart depicts RTCP packet arrivals as seen by user 6. Before the BYE flood, the timeout

window for user 6 contained RTCP packet receptions from every other user. However, after the

flood, the window of user 6 has shrunk so that users 0, 1 and 2 have their last packets outside of

the window. This will cause them to be timed out.

For example, consider a group of 505 users. If the total RTCP interval is to be limited

to 1 packet per second, each user sends RTCP packets once every 505 seconds (on average).

Assume user 1 last sent an RTCP packet at time 0. User 1 schedules the next RTCP packet for

time 505. At time 490, 500 of the 505 members (not including user 1) leave the group, and send

BYE packets (assume for the moment that there is no BYE flood prevention algorithm). Shortly

thereafter (say time 500) the BYE packets have been received, and the remaining 5 users perceive

the group size to be 5. Based on this, the timeout interval is 25 seconds. Any user who has not

sent a packet since time 475 will therefore be timed out. User 1 last sent a packet at time 0, so

user 1 is timed out. In fact, odds are good that most of the remaining 5 users sent their last packet

142

before time 475. Thus, every user will time out all of the other users. Furthermore, it may take a

long time for those users to come back. Consider user 2, who did not leave the group, and who

was unfortunate enough to have last sent an RTCP packet at time 450. They then scheduled their

next RTCP packet for time 955 (since there were still 505 users at the time). After the exodus at

time 500, user 2 will remain, but will not send the next RTCP packet until time 955 (unless the

user sends data, in which case they will be known via the RTP packet).

The first question to ask is whether BYE flood prevention helps alleviate this problem.

Since the algorithm is designed to reduce the flood of BYE packets, the group size cannot drop

so rapidly. This does help, of course, but not completely. With network delays, there still can be

spikes in BYE packets. It does not require many BYE packets for this phenomenon to surface; it

only requires that the ratio of users left after the leave to the number before the leave be less than

around 1/5. This can occur in both small and large groups alike.

Furthermore, we performed a simple analysis to help quantify the scope of the effect. Our

analysis, like those above, is only approximate. Its main function is to help assess at what slopes

of change in the group membership the phenomena becomes noticeable.

We start by assuming that the group membership begins decreasing at time t = 0 at a rate

of r users per second. The initial group size is Ns, and the final group size is Nf , which is some

fraction f of the initial group size, so that Nf = fNs. Based on this, the learning curve can be

expressed as:

L(t) =



Ns t < 0

Ns − rt 0 < t < Ns(1−f)
r

fNs t > Ns(1−f)
r

(3.80)

At any point in time, the timeout window stretches from t −MCL(t) to t. During this interval,

each participant must have sent at least one packet, else they are timed out. On average, each user

should have sent M packets during this window. In normal RTP operation, M is 5.

We consider two cases: long, gradual declines in group membership, and more rapid

declines. Our definition of long, gradual declines are those where the timeout window is much

shorter in duration than the amount of time during which the decline in group membership is

linear. Short declines is where the timeout window is much larger than the time during which the

143

decline in group membership is linear.

3.9.1.1 Long Declines

Mathematically, we can express the long decline case as:

t−MCL(t) > CNs (3.81)

For most of the duration of the decline. This condition guarantees that there is a period of time

for which the packet scheduling is only based on the group membership during the linear decline.

This means the equality must hold at least for t = Ns(1−f)
r . Using the expression for L(t) from

3.80 in Equation 3.81, and evaluating the result at t = Ns(1−f)
r , we obtain:

rC <
1− f

1 + fM
(3.82)

To determine the impact of this decline on timeouts, we need to compute an estimate of

the number of packets sent from each user during this window. Ideally, this quantity is M , but if

it is substantially less, premature timeouts may occur.

To compute the number of packets sent by each user, we use a fluid model of packet

transmissions. The packet rate from any user is ideally 1/CL(t) on average. However, we have

observed that there is a delay between when group sizes change, and when this is reflected in the

rate of packet transmissions. This delay is based on the interval size. So, the scheduled rate of

packets from a particular user at time t can be given by:

d′(t+ CL(t)) =
1

CL(t)
(3.83)

This equation is similar to Equation 3.8. However, here we consider the scheduled rate from a

single user (and thus the absence of the N from Equation 3.8), and we also consider the packet

rate, not just the initial packet rate, as is done in Equation 3.8.

Combining with the expression for L(t) from Equation 3.80, we can obtain an equation

for the scheduled rate from a particular user:

d′(t) =
1− rC

CNs − rCt (3.84)

144

The total number of packets sent by the user during the window is the integral of the

scheduled rate over the duration of the window, times the send probability. Since group sizes

are declining, packets won’t be reconsidered in conditional reconsideration, but they may be for

unconditional. However, we make the simplifying assumption that packets are not reconsidered,

so that the send probability is 1. In this case, the expression for the number of packets sent during

the timeout window is:

Nsent =
∫ Ns(1−f)

r

Ns(1−f)
r

−MCNf

1− rC
CNs − rCt (3.85)

This integral is readily evaluated to:

Nsent =
(

1
rC
− 1

)
ln(1 + rCM) (3.86)

Note that this quantity is positive only if rC is less than one. However, the conditions for long

declines described in Equation 3.82 guarantee that this is the case.

We observe that in the limit as r goes to zero, Nsent approaches M , as it should. This

means that when the group sizes are not declining, M packets are sent during the timeout win-

dow. It is also clear that the number of packets sent begins to decline below M as rC becomes

significant. Unfortunately, our formulation is no longer valid once rC approaches 1. However,

the formulation does indicate that there is a significant reduction in the number of packets sent in

the timeout window even for gradual rates of decline. For example, with rC = .5, the number of

packets sent during the window is 1.25 (assuming M = 5).

3.9.1.2 Rapid Declines

We also consider the number of packets sent during the timeout window when the rate of decrease

in group membership is rapid. Here, we define rapid as the case where the amount of time it takes

for the group membership to decline to Nf is less than the RTCP interval before the decline

began. Mathematically, this implies:

Ns(1− f)
r

< CNs (3.87)

Some simple algebra indicates that this occurs when rC > 1 − f . It can be readily

demonstrated that in this case, the number of packets sent during the timeout window at t =

145

Ns(1−f)
r is identical to the case of an instant departure. This is due to the inherent “delay” in the

density function, where changes in group membership don’t get reflected in the transmission rate

until some time later.

In the case of an instant departure, the group membership instantly drops toNsf fromNs

at t = 0. Before this drop, and for a substantial time later, the rate of packets from any specific

user is 1/CNs. After the drop, the timeout window is fNsMC . The number of packets sent is

readily computed as the product of the packet rate before the drop times the size of the window.

The result is:

Nsent = fM (3.88)

Consider once more the example where rC = 0.5. In the case of a long decline, we found

that the number of packets sent was 1.25. The constraint of Equation 3.82 also implies an upper

bound on f for long declines. In particular:

f <
1− rC

1 + rCM
(3.89)

With rC = 0.5, f must be less than 0.142. This implies that the number of packets sent in the

case of a rapid decline with the same value of f is less than fM = 0.714 with M = 5. This

result is interesting; the implication is that the number of packets sent rapidly decreases from its

maximum of M = 5 to 1.25 as rC goes from 0 to 0.5. As rC continues to increase from 0.5 to

infinity, the number of packets sent drops only slightly more, from 1.25 to 0.714. This means that

the premature timeout phenomena quickly becomes important even for relatively slow declines.

3.9.2 Reverse Reconsideration Algorithm

One of the major factors contributing to the premature timeout effect is the delay between when

the group size decreases, and when users begin to send packets using the resulting smaller inter-

val. In the example of Section 3.9.1 user 2 sent an RTCP packet at time 450, and scheduled the

next for time 955. After the exodus at time 490, user 2 knows that the group size has dropped, but

does nothing. The user instead waits until time 955, sends the packet, and then computes the next

send time. Since the group size is now 5, user 2 will schedule the next packet 5 seconds later, on

146

average. There is thus a 500 second “delay” between the exodus and when user 2 gets around to

scheduling a packet using the new, smaller interval.

To resolve this problem, we propose an algorithm called reverse reconsideration. The

idea is simple. If the group membership decreases, each user reschedules their next packet im-

mediately. The packet is rescheduled for a time earlier than it was scheduled previously. The

amount earlier is made to depend on how much the group size has decreased.

More specifically, assume that the last time a user sent an RTCP report is tp. The next

report is scheduled for time tn, and tc is the current time. Before the arrival of a BYE packet at

the current time tc, there were np users. There are now nc users. Before the BYE, RTCP packet

transmissions should be uniformly scheduled over time. That means that there should have been

nc packet transmissions scheduled between tc and tc + Cnc. Now, however, the group size has

decreased to np. This should cause there to be np packet transmissions scheduled between tc and

Cnp. To accomplish this, every user should compress the interval between the current time and

their next packet transmission by nc/np. This implies that the new next packet transmission time

should be rescheduled for time t′n:

t′n = tc +
nc
np

(tn − tc) (3.90)

This new value for tn has two key properties:

1. The new time is always earlier than the previous time.

2. The new time can never be before the current time.

The second property is key; it guarantees that there will not be a spike of packets transmitted due

to a sharp decrease in group size.

On the surface, it would seem that an alternate algorithm might be a direct application

of regular (i.e., forward) reconsideration. Such an implementation might work as follows. At tc,

when the BYE arrives, the user recomputes the transmission interval T , based on the new group

size nc. This interval is then added to the previous packet transmission time tp. If the result is a

time before the current time, the packet is sent, else it is rescheduled for tp + T . This algorithm

does not work. Even a moderate decrease in the group size would cause many users to send

147

their RTCP packets immediately, causing an additional spike. This is because this version of the

algorithm does not maintain property 2; the new transmission time can be before the current time.

There is one additional aspect to the reverse reconsideration algorithm that must be con-

sidered, which is how it interacts with forward reconsideration. Consider the following example.

There are 100 users in a group. The constant C is equal to 1 packet per second. At time 0, user A

sends an RTCP packet, and schedules the next for time 100. At time 50, 50 users leave the group.

User A executes the reverse reconsideration algorithm, and reschedules their packet for time 50 +

(50/100)(100 - 50) = 75. At time 60, one more user joins the group. At time 75, user A executes

the forward reconsideration algorithm (we assume conditional reconsideration). Since the group

size has increased (51 vs. 50), user A recomputes the interval, which is now 51 seconds on aver-

age. This is then added to the previous transmission time, which is time 0. The result is t = 51,

significantly earlier than the current time t = 75. This will cause the user (and in fact, all other

users) to send their packets immediately, even if the group size further increases. The problem is

that while we have adjusted the next packet transmission time, tn, with reverse reconsideration,

we have not adjusted the value of the previous packet transmission time, tp. This quantity is used

for forward reconsideration, and must be adjusted as well in order to maintain consistency.

The adjustment algorithm is simple. The value for tp is updated when tn is updated by

reverse reconsideration. Its value is adjusted to t′p:

t′p = tc − nc
np

(tc − tp) (3.91)

The nature of this adjustment is the same as for tn. In the previous example, it would have caused

tp to be adjusted from 0 to (50 - (50/100)(50 - 0)) = 25. At time 75, when the user is performing

the forward reconsideration algorithm, the interval T = 51 is added to tp = 25, yielding t = 76,

slightly ahead of the current time t = 75, as expected (since the group has only increased by one

member).

The complete algorithm is described in Figure 3.22. The algorithm is executed every time

the group size changes.

148

tc := current time
nc := current group size
if(nc < np) {
tn := tc + nc

np
(tn − tc)

tp := tc − nc
np

(tc − tp)
np := nc
}

Figure 3.22: Reverse Reconsideration Algorithm

3.9.3 Performance

What is the improvement due to reverse reconsideration? It can be shown that the number of

packets sent by a single user during the timeout window has an achievable lower bound of:

Np = (1/rC) ∗ ln(1 + rCM) (3.92)

This time, independent of the relative value of rC . We omit the proof for brevity; it closely

follows the procedure used for the single user joins late computation of Section 3.7.3.6. Again,

this holds only when the actual number of users who leave is a significant fraction of the current

group size (Nf/Ns < 1/(1+MCr)). Assuming that BYE reconsideration is being used, Section

3.8 demonstrated that the BYE rate is limited to around r = 2/C when network delays are small.

Substituting this into Equation 3.92, we obtain:

Np = 1/2 ln 11 = 1.19 (3.93)

This means that a user will send 1.19 packets on average, during the timeout window.

Note that this only holds when Nf/Ns < 1/(1+MCr). With r = 2/C and M = 5, this implies

f < 1/11. Without reverse reconsideration, Np is equal to fM . For a fair comparison, consid-

ering the case with f = 1/11, Np = 5/11. Therefore, reverse reconsideration affords a factor of

three improvement in performance. Now, no users will timeout under normal circumstances (on

average). However, a single packet loss may cause a user to timeout prematurely.

Our simulations confirm the performance gains from reverse reconsideration. Figure 3.23

depicts the learning curve L(t) as seen by a single user present for the entire session. At time

149

0

5

10

15

20

25

30

35

40

45

50

400 450 500 550 600

N
um

be
r

Time (s)

Group Size Estimate

No reverse
Reverse

Figure 3.23: Group Size Estimate with Reverse Reconsideration

0, 105 users join the system, and all but five leave at time 500. Two curves are depicted, one

for reverse reconsideration, and one without. The curve without reconsideration shows how the

group size estimate drops to zero (the user does not include themselves in this estimate), and does

not return to five for almost two minutes. However, with reverse reconsideration, the group size

estimate returns to the correct value within a few seconds.

3.10 Group Sampling

As we have seen, the original RTCP transmission algorithms and our improvements with recon-

sideration both require a participant to maintain a group size estimate L(t) of the number of

participants in the group. In order to do this, a participant must maintain a table of SSRC values

for other participants in the session. When an RTCP packet arrives, if the SSRC is in the table

already, nothing is done. Otherwise, the SSRC is added to the table, and the group size estimate

L(t) is incremented by one. If a BYE packet arrives with an SSRC currently in the table, the

estimate is decremented by one.

For large multicast sessions, such as an MBone broadcast or IP-based TV distribution,

group sizes can be extremely large, on the order of hundreds of thousands to millions of partic-

150

ipants. In these environments, RTCP may not always be used, and thus the group membership

table isn’t needed. However, it is highly desirable for RTP to scale well for groups with one

member to groups with one million members, without human intervention to “turn off” RTCP

when it’s no longer appropriate. This means that the same tools and systems can be used for both

small conferences and TV broadcasts in a smooth, scalable fashion.

Storage of an SSRC table with one million members, for example, requires at least four

megabytes. As a result, embedded devices with small memory footprints may have difficulty un-

der these conditions. To solve this problem, SSRC sampling has been proposed. SSRC sampling

uses statistical sampling to obtain a stochastic estimate of the group membership. In this section,

we discuss SSRC sampling, and in particular, focus on the issues in using it for highly dynamic

groups.

3.10.1 Basic Operation

The basic idea behind SSRC sampling is simple. Each participant maintains a key K of 32 bits,

and a mask M of 32 bits. Assume that m of the bits in the mask are 1, and the remainder are

zero. When an RTCP packet arrives with some SSRC S, rather than placing it in the table, it is

first sampled. The sampling is performed by ANDing the key and the mask, and also ANDing

the SSRC and the mask. The resulting values are compared. If equal, the SSRC is stored in the

table. If not equal, the SSRC is rejected, and the packet is treated as if it were never received.

The key can be anything, but is usually chosen to be the SSRC of the user who is per-

forming the sampling.

This sampling process can be described mathematically as:

D = (K ∧M == S ∧M) (3.94)

Where the ∧ operator denotes AND and the == operator denotes a test for equality. D represents

the sampling decision.

According to the RTP specification, the SSRC’s used by session participants are chosen

randomly. If the distribution is also uniform, it is easy to see that the above filtering will cause 1

out of 2m SSRC’s to be placed in the table, where m is the number of bits in the mask, M , which

are one. Thus, the sampling probability p is 2−m.

151

Then, to obtain an actual group size estimate, L, the number of entries in the table N is

multiplied by 2m:

L = N2m (3.95)

Care must be taken when choosing which bits to set to 1 in the mask. Although the RTP

specification mandates randomly chosen SSRC, there are many known implementations which

do not conform to this. In particular, the ITU H.323 [82] series of recommendations allows the

central control element, the gatekeeper, to assign the least significant 8 bits of the SSRC, while

the most significant are randomly chosen by RTP participants.

The safest way to handle this problem is to first hash the SSRC using a cryptographically

secure hash, such as MD5 [83], and then choose 32 of the bits in the result as the SSRC used

in the above computation. This provides much better randomness, and doesn’t require detailed

knowledge about how various implementations actually set the SSRC.

3.10.1.1 Performance

The estimate is more accurate as the value of m decreases, less accurate as it increases. This can

be demonstrated analytically. If the actual group size is G, the ratio of the standard deviation to

mean of the estimate L (coefficient of variation) is:

√
2m − 1
G

(3.96)

This equation can be used as a guide for selecting the thresholds for when to change

the sampling factor, as discussed below. For example, if the target is a 1% standard deviation

to mean, the sampling probability p = 2−m should be no smaller than .5 when there are ten

thousand group members. More generally, to achieve a desired standard deviation to mean ratio

of T , the sampling probability should be no less than:

p >
1

1 +GT 2
(3.97)

152

3.10.2 Increasing the Sampling Probability

The above simple sampling procedure would work fine if the group size was static. However, it is

not. A participant joining an RTP session will initially see just one participant (themselves). As

packets are received, the group size as seen by that participant will increase. To handle this, the

sampling probability must be made dynamic, and will need to increase and decrease as the group

size varies.

The procedure for increasing the sampling probability is easy. A participant starts with

a mask with m = 0. Under these conditions, every received SSRC will be stored in the table,

so there is effectively no sampling. At some point, the value of m is increased. This implies

that approximately half of the SSRC already in the table will no longer match the key under the

masking operation. In order to maintain a correct estimate, these SSRC must be discarded from

the table. New SSRC are only added if they match the key under the new mask.

The decision about when to increase the number of bits in the mask is also simple. Let’s

say an RTP participant has a memory with enough capacity to store C entries in the table. The

best estimate of the group is obtained by the largest sampling probability. This also means that

the best estimate is obtained the fuller the table is. A reasonable approach is therefore to increase

the number of bits in the mask just as the table fills to C . This will generally cause its contents to

be reduced by half. Once the table fills again, the number of bits in the mask is further increased.

3.10.3 Reducing the Sampling Probability

If the group size begins to decrease, it may be necessary to reduce the number of bits in the mask.

Not doing so will result in extremely poor estimates of the group size. Unfortunately, reducing

the number of bits in the mask is more difficult than increasing them.

When the number of bits in the mask increases, the user compensates by removing those

SSRC which no longer match. When the number of bits decreases, the user should theoretically

add back those users whose SSRC now match. However, these SSRC are not known, since the

whole point of sampling was to not have to remember them. Therefore, if the number of bits in

the mask is just reduced without any changes in the membership table, the group estimate will

instantly drop by exactly half.

153

To compensate for this, some kind of algorithm is needed. Two approaches are analyzed

here: a corrective-factor solution, and a binning solution. Our results show that the binning

solution generally outperforms the corrective factors solution.

3.10.3.1 Corrective Factors

The idea with the corrective factors is to take one of two approaches. In the first, a corrective

factor is added to the group size estimate, and in the second, the group size estimate is multiplied

by a corrective factor. In both cases, the purpose is to compensate for the change in sample mask.

The corrective factors should decay as the “fudged” members are eventually learned about and

actually placed in the membership list.

The additive factor starts at the difference between the group size estimate before and after

the number of bits in the mask is reduced, and decays to 0 (this is not always half the group size

estimate, as the corrective factors can be compounded, see below). The multiplicative corrective

factor starts at 2, and gradually decays to one. Both factors decay over a time of CL(t−s), where

C is the average RTCP packet size divided by the RTCP bandwidth for receivers, and L(t−s) is

the group size estimate just before the change in the number of bits in the mask at time ts. The

reason for this constant is as follows. In the case where the actual group membership has not

changed, those members which were forgotten will still be sending RTCP packets. The amount

of time it will take to hear an RTCP packet from each of them is the average RTCP interval, which

is CL(t−s). Therefore, by CL(t−s) seconds after the change in the mask, those users who were

fudged by the corrective factor should have sent a packet and thus appear in the table. We chose

to decay both functions linearly. This is because the rate of arrival of RTCP packets is constant,

so that the group membership count should increase linearly as these users are learned.

What happens if the number of bits in the mask is reduced once again before the previous

corrective factor has expired? In that case, we compound the factors by using yet another one.

Let fi() represent the ith additive correction function, and gi() the ith multiplicative correction

function. If ts is the time when the number of bits in the mask is reduced, we can describe the

additive correction factor as:

154

fi(t) =




0 t < ts

(L(t−s)− L(t+s)) ts+CL(t−s)−t
CL(t−s)

ts < t < ts + CL(t−s)

0 t > ts + CL(t−s)

(3.98)

and the multiplicative factor as:

gi(t) =




1 t < ts
ts+2CL(t−s)−t

CL(t−s)
ts < t < ts + CL(t−s)

1 t > ts + CL(t−s)

(3.99)

Note that in these equations, L(t) denotes the group size estimate obtained including the

corrective factors except for the new factor. If this were not the case, the above definitions would

be recursive. t−s is the time right before the reduction in the number of bits, and t+s the time after.

As a result, L(t−s) represents the group size estimate before the reduction, and L(t+s) the estimate

right after, but not including the new factor.

Finally, the actual group size estimate L(t) is given by:

L(t) = N2m +
∑

fi(t) (3.100)

for the additive factor, and:

L(t) = N2m
∏
gi(t) (3.101)

for the multiplicative factor.

As an example, consider computation of the additive factor. The group size is 1000, C

is 1 second, and m is two. With a mask of this size, a participant will, on average, observe 250

(N = 250) users. At t = 0, the user decides to reduce the number of bits in the mask to 1. As a

result, L(0−) is 1000, and L(0+) is 500. The additive factor therefore starts at 500, and decays

to zero at time ts +CL(t−s) = 1000. At time 500, lets assume N has increased to 375 (this will,

on average, be the case if the actual group size has not changed). At time 500, the additive factor

is 250. This is added to N2m, which is 750, resulting in a group size estimate of 1000. Now,

the user decides to reduce the number of bits in the mask again, so that m=0. Another additive

155

factor is computed. This factor starts at L(t−s) (which is 1000), minus L(t+s). L(t+s) is computed

without the new factor; it is the first additive factor at this time (250) plus 2m (1) times N (375).

This is 625. As a result, the new additive factor starts at 1000-625 (375), and decays to 0 in 1000

seconds.

3.10.3.2 Binning Algorithm

In order to more correctly estimate the group size even when it was rapidly decreasing, a binning

algorithm can be used. The algorithm works as follows. There are 32 bins, same as the number

of bits in the sample mask. When an RTCP packet from a new user arrives whose SSRC matches

the key under the masking operation, it is placed in the mth bin (where m is the number of ones

in the mask), otherwise it is discarded.

When the number of bits in the mask is to be increased, those members in the bin who

still match after the new mask are moved into the next higher bin. Those who don’t match are

discarded. When the number of bits in the mask is to be decreased, nothing is done. Users in the

various bins stay where they are. However, when an RTCP packet for a user shows up, and the

user is in a bin with a higher value than the current number of bits in the mask, it is moved into

the bin corresponding to the current number of bits in the mask. Finally, the group size estimate

L(t) is obtained by

L(t) =
i=31∑
i=0

B(i)2i, (3.102)

where B(i) are the number of users in the ith bin.

The algorithm works by basically keeping the old estimate when the number of bits in the

mask drops. As users arrive, they are gradually moved into the lower bin, reducing the amount

that the higher bin contributes to the total estimate. However, the old estimate is still updated

in the sense that users which timeout are removed from the higher bin, and users who send

BYE packets are also removed from the higher bin. This allows the older estimate to still adapt,

while gradually phasing it out. It is this adaptation which makes it perform much better than the

corrective algorithms. The algorithm is also extremely simple.

156

3.10.3.3 Comparison

We ran simulations to compare the performance of these algorithms. In the simulation, 10,001

users join a group at t=0. At t=10,000, 5000 of them leave. At t=20,000, another 5000 leave. All

implement an SSRC sampling algorithm, unconditional forward and BYE reconsideration. When

sampling is used, a memory size of 1000 SSRC was assumed.

Figure 3.24 shows the group size estimate as seen by the single user present throughout

the entire session. The performance without sampling, and with sampling with the additive,

corrective, and bin-based correction are depicted. The horizontal axis represents time in seconds,

and the vertical axis represents the group size estimate L(t).

0

2000

4000

6000

8000

10000

12000

0 5000 10000 15000 20000 25000 30000 35000

nu
m

be
r

time (s)

Group Size Estimate

None
Binned

Additive
Multiplicative

Figure 3.24: Comparison of SSRC Sampling Algorithms

From the graph, it can be seen that all three mechanisms do a fairly good job as estimat-

ing the group size throughout most of the session. However, during the period of rapid group

size reduction (as a result of 10,000 users eventually leaving), the estimates from the corrective

factors algorithms underestimate the group size. This is shown in more detail in Table 3.6, which

tabulates the group size estimates from time 20,000 to time 25,000.

As the table shows, the binning algorithm comes closest to the exact (unsampled) group

size estimate, particularly as the estimate drops below 1000. From the table, it can also be seen

that the multiplicative correction factor consistently performs worse than the additive factor.

157

Time No Sampling Binned Additive Multiplicative
20000 5001 5024 5024 5024
20250 4379 4352 4352 4352
20500 3881 3888 3900 3853
20750 3420 3456 3508 3272
21000 3018 2992 3100 2701
21250 2677 2592 2724 2225
21500 2322 2272 2389 1783
21750 2034 2096 2125 1414
22000 1756 1760 1795 1007
22250 1476 1472 1459 582
22500 1243 1232 1135 230
22750 1047 1040 807 80
23000 856 864 468 59
23250 683 704 106 44
23500 535 512 32 32
23750 401 369 24 24
24000 290 257 17 17
24250 198 177 13 13
24500 119 129 11 11
24750 59 65 8 8
25000 18 1 2 2

Table 3.6: Group Size Estimate with Sampling Algorithms

3.10.4 Sender Sampling

Care must be taken in handling senders when using SSRC sampling. Since the number of senders

is generally small, and they contribute significantly to the computation of the RTCP interval,

sampling should not be applied to them. However, they must be kept in a separate table, and not

be “counted” as part of the general group membership. If they are counted as part of the general

group membership, and are not sampled, the group size estimate will be inflated to overemphasize

the senders.

This is easily demonstrated analytically. Let Ns be the number of senders, and Nr be the

number of receivers. The membership table will contain all Ns senders and 1
2
m

of the receivers.

The total group size estimate in the current draft is obtained by 2m times the number of entries in

the table. Therefore, the group size estimate becomes:

158

L(t) = Nr + (2m)Ns (3.103)

which exponentially weights the senders.

This is easily compensated for in the binning algorithm. A sender is always placed in the

0th bin. When a sender becomes a receiver, it is moved into the bin corresponding to the current

value of m, if its SSRC matches the key under the masked comparison operation.

3.11 Conclusions

In this chapter, we considered the problem of feedback for multicast multimedia sessions. We

demonstrated the problems of congestion, latency, and state storage for the feedback mechanism

currently defined in RTP. After an examination of other proposed solutions, we propose a set of

algorithms broadly deemed reconsideration, which work well in adapting feedback in dynamic

groups to control congestion. Through simulation and analysis, we demonstrated that reconsid-

eration significantly reduces the congestion problem in RTP feedback. We also demonstrate how

it remains backwards compatible with existing RTP mechanisms, in addition to meeting all the

other requirements outlined for IP telephony.

We have also observed that our work has broader applicability than just feedback control

for RTP. The reconsideration algorithms, at their core, provide a means for fair bandwidth sharing

among a dynamic set of participants on a shared medium. As such, they can be considered a

completely distributed form of fair queuing [84]. In fact, by adding simple weights to C which

vary from participant to participant, our algorithms can implement a distributed form of weighted

fair queuing. Such a distributed algorithm would has useful applications for bandwidth sharing

on ethernets, distributed video rate control, and distributed gaming, to name a few. Our analysis

is also applicable to these applications, as it effectively shows how close we come to true WFQ

as a function of the network latency.

This chapter has also shown how statistical sampling can vastly reduce memory require-

ments for feedback, with almost no penalty in performance. Like reconsideration, this work has

applicability to any distributed sampling application.

159

Forward reconsideration, BYE reconsideration, and reverse reconsideration have all been

accepted by the IETF as improvements upon RTP. They have been folded into the specification

[85] and will be part of the draft standard version of RTP. The SSRC sampling algorithms have

also been accepted by IETF and have been published as an experimental RFC, RFC 2762 [86].

160

Chapter 4

Signaling Protocols

4.1 Introduction

So far, we have considered the problem of providing scalable Internet telephony from the per-

spective of the transport and transport control layers. As we have discussed in the introduction,

Internet telephony is fundamentally different from traditional circuit switched telephony in that

there is a complete separation of media transport from call control, signaling, and services, except

at the end systems.

Central to call control, features, services and applications is the signaling protocol. Sig-

naling protocols are responsible for the establishment and maintenance of calls, and the invoca-

tion and delivery of services. In the PSTN, protocols such as the ISDN User Part (ISUP) [87]

have played this role, as part of the SS7 stack. We believe that protocols for signaling within the

Internet can, and should, be significantly different in structure from those used in the PSTN. This

difference is mandated by two architectural differences between Internet telephony and circuit

switched telephony. First is the distributed nature of Internet telephony, and the second is the

ability of Internet telephony to deliver combined services (also referred to as hybrid services by

Gbaguidi [88]) that make use of web, email, instant messaging, and other Internet applications as

components of voice and video communications services.

In this chapter, we investigate the problem of designing a signaling protocol for Internet

telephony. We begin by discussing the requirements for such a protocol. This is followed by a

161

review of existing work in this area, with an emphasis on if, and how, existing techniques meet

the requirements we have outlined. This is followed by a presentation of a new protocol that we

have co-developed, called the Session Initiation Protocol (SIP), which is currently standardized

by the IETF in RFC 2543 [89]. Finally, we discuss an implementation of a SIP server that was

built to enable these services, called gosSip, and then we conclude and discuss future work.

4.2 Requirements for a Signaling Protocol

Some of the required functionality for an Internet telephony signaling protocol has been outlined

by Rosenberg and Schulzrinne [90]:

Name translation and user location: When one user wishes to communicate with another, they

start with a location independent identifier for the other user. Examples of such identifiers

are phone numbers and email addresses. It is the responsibility of the network to translate

this identifier to an address which represents the network location(s) where the user is res-

ident. We pluralize locations since, especially in the Internet, a user may be connected to

the network through numerous devices, such as a desktop PC, a laptop, a PDA, and an IP

telephone. Each of these devices differs in its capabilities and appropriateness for commu-

nications of different sorts. The signaling protocol needs to convey sufficient information

to allow a user to be contacted, in a timely fashion, at the appropriate point(s) of contact.

Call state modification: The signaling protocol needs to allow all parties in a communications

session to maintain a state machine reflecting call progress. This includes states like “ring-

ing”, “active” and “terminated”. To support this, the protocol needs messages that can

convey the events that causes transitions between these states in a reliable fashion, guaran-

teeing convergence of the states amongst all parties.

Media information exchange: The end systems need to agree on what media types to exchange

(audio, video, text), which codecs to use for each media stream, and the parameters for

those encodings. Since media is sent end-to-end, the end systems also need to exchange

the IP addresses and ports for those media streams.

162

Media changes: It must be possible to adjust the composition of media sessions during the

course of a call, either because the participants require additional or reduced functionality

or because of constraints imposed or removed by the addition or removal of call partici-

pants.

User feature invocation: The signaling protocol must provide mechanisms for users to request

the system to deliver call features, such as hold and call forward.

Network feature invocation: Many features and call services are not explicitly invoked by users,

but are invoked by the service provider during processing of the call. As an example, call

screening features can be provided by network servers. They are invoked by the provider

during call processing, resulting in either rejection of the call, or completion of the call.

The signaling protocol must provide sufficient capabilities for network-invoked features

and applications.

Many other functions are needed for a complete communications management system.

Examples include distributed queue management for floor control (needed only for multiparty

conferences) and distributed counting for voting. We consider these outside the scope of signaling

function because they are session specific. In our model, the signaling protocols are independent

of the type of sessions they establish.

Perhaps the most critical component of a signaling protocol is its ability to deliver ser-

vices. Services can range from the simple and mundane (call hold, call waiting, caller ID, call

transfer) to extremely complex and valuable (unified messaging, interactive voice response, voice

web browsing). We believe that one of the primary benefits of Internet telephony is its ability to

deliver a wide range of new services. This ability stems from the existence of other applications

on the Internet that can be used in conjunction with voice, video, and other communications

mechanisms. These applications include web, email, instant messaging, and presence. Presence

[91] is defined as the ability to subscribe to the communications state of another user, and then to

receive notifications as that state changes. Presence systems have been in existence for quite some

time on the Internet; Zephyr, for example [92], has been around since the late 1980s. At the time

of writing, the America Online (AOL) presence service had close to 100 million users. Presence

163

has traditionally been associated with instant messaging services, but its potential application is

far broader than that.

We refer to services that combine web, email, instant messaging, presence, and other IP

applications with communications as combined services. Chapter 6 gives numerous examples of

such services. A simple one is Call Forward No Answer to Web (CFNA-W). In the PSTN, Call

Forward No Answer (CFNA) is a widely used and simple service. Users of this service call a

specific number, and if no one answers, the call is forwarded to some other number. In CFNA-W,

users call a specific user, and if there is no answer, the user is returned a web page. This web page

may, for example, provide information on how to send the callee email, or a URL to click on for

sending voicemail.

Combined services are critical for Internet telephony, since they offer a source of revenue

for Internet telephony service providers which is not possible for traditional circuit switched tele-

phony providers. For consumers, Internet telephony started out primarily as a tool for cheap long

distance and international calls. Service providers used it for arbitrage of local access charges.

However, cost differentials often disappear over time as industries evolve, and so Internet tele-

phony must have a value proposition beyond “cheap”.

Providing combined services requires a signaling protocol with the primitives needed to

deliver them. It also requires a service architecture that can take advantage of the capabilities

of the protocol to actually provide the services. In this chapter, we consider the primitives that

need to be built into the signaling protocols. In Chapter 6, we consider how to build a service

architecture around these primitives.

4.3 Existing Signaling Protocols

In this section, we consider the existing body of work on Internet telephony signaling protocols.

Not surprisingly, much of this work has been done by standards bodies. We focus here on the

Bearer Independent Call Control (BICC) protocol [93], developed by the ITU and the H.323 suite

of protocols [94], also developed within the ITU.

164

4.3.1 BICC

The most widely deployed signaling protocol to date is the ISDN User Part (ISUP) [87], which is

the network to network protocol used between telephone switches as part of the digital Signaling

System 7 (SS7) network. ISUP provides many of the functions described in Section 4.2, which

are independent of the actual bearer circuit used to carry the call. A few components of ISUP,

however, are specific to creation of bearer circuits, and thus ISUP is not appropriate in its native

format for Internet telephony signaling. However, this is being rectified by recent activity within

ITU called Bearer Independent Call Control (BICC) [93], which is aimed at extracting the call

control components from ISUP, and allowing other bearers, such as ATM and RTP/UDP/IP, to be

used instead of circuits.

Clearly, BICC can provide support for name translation and user location, call state mod-

ification, user feature invocation, and network feature invocation, purely as a consequence of

being based on ISUP. Its ability to support media changes and media capability negotiation are

dependent on what support it has for establishment of RTP bearers. At the time of writing of this

dissertation, that work was in its early stages.

BICCs strength is ease of interoperability with the PSTN, and the ability to transparently

deliver existing circuit switched features and services to IP endpoints.

BICCs primary drawback is that it it cannot deliver any services beyond existing circuit

switched features and applications. This includes combined services. As we discuss in Sec-

tion 4.4.8, supporting combined services requires support for MIME object transport and URL

addressing, amongst other capabilities. These are absent in BICC.

4.3.2 H.323

The ITU has also developed the H.323 series of recommendations [94]. H.323 was originally

specified as a signaling protocol for packet communications on LANs with no support for QoS.

However, version 2 expanded its scope to cover the Internet specifically, and it gained widespread

support as the industry standard for Internet telephony signaling. Version 4 of H.323 [95] was

approved at the end of 2000.

H.323 is actually an umbrella specification, covering a suite of recommendations that

165

define a complete system for packet-based multimedia communications. These recommendations

include:

H.225.0: H.225.0 [96] covers basic call establishment and termination, registration, admission,

and status (RAS), and media transport (which uses RTP).

H.245: H.245 [97] covers session control, including capabilities negotiation, logical channel

signaling, conference control and floor control.

H.235: H.235 covers security for H.323 systems [98].

H.246: H.246 [99] covers interoperability with other multimedia systems, include H.324 (PSTN

multimedia) and H.320 (ISDN multimedia).

H.450: H.450 is a series of recommendations itself, each of which covers a particular supple-

mentary service. Examples include call transfer, call diversion, call hold, and call park.

H.450.1 [100] outlines the framework for the series.

The central element in the H.323 network is the gatekeeper. It is responsible for call rout-

ing, call management, endpoint management, and overall resource management for the collection

of terminals and gateways under its control (the collection of which is referred to as a zone).

A complete treatment of H.323 is well beyond the scope of this dissertation, as the sum

total lengths of the specifications themselves are well into the thousands of pages. Toga and Ott

provide a good tutorial [101], as does Toga and ElGebaly [102].

The strengths and weaknesses of H.323 (especially compared to SIP) have been docu-

mented by Rosenberg and Schulzrinne [103], Pagurek and White [104], Agboh [105] and Sisalem

[106]. H.323’s strengths are its support for video conferencing systems. Its capability negotia-

tion features are well beyond those provided by SIP and SDP, and these are important for video

codecs. H.323 provides some specific features for lip synchronization and playout buffer man-

agement that are absent in SIP. Levin documents several of the missing capabilities for video in

SIP, which are present in H.323 [107]. It is worthwhile to note that most are issues with SDP or

RTP, and not with SIP itself.

166

H.323’s drawbacks are its substantial (and continually growing) complexity, and the

wealth of different ways to accomplish the same function, both of which have led to interoper-

ability problems. Its central network element, the gatekeeper, needs to maintain call state in order

to participate in call signaling, which hampers scalability and fault tolerance. It lacks advanced

user location functions, such as forking, which allow a call to ring numerous phones simultane-

ously. Its model for QoS is that the gatekeeper manages the capacity of the network. Primitives

are provided for admission and bandwidth control. These are not useful outside of LAN-based

IP telephony, since the gatekeeper cannot determine capacity for media calls in a general purpose

IP network. H.323’s extensibility relies on protocol versioning and vendor specific attributes

scattered throughout the protocol, which is very limited.

Most importantly, H.323 has difficulty delivering new services. The standardized vehicle

for services is the H.450 series of recommendations, which provide only the most basic features.

A specification is required for every feature. This limits the speed at which features can be added,

and limits vendor creativity. Mechanisms for third party call control are absent, and these are

critical for services, as we shall see in Chapter 4. H.323 is also unable to delivery many combined

services. As with BICC, it lacks support for MIME transport and ubiquitous URL addressing1.

4.4 SIP Overview

To resolve the limitations of existing signaling protocols, we co-developed, along with colleagues

from Columbia University, Aciri and Caltech, the Session Initiation Protocol (SIP), which is

currently an IETF proposed standard, RFC 2543 [89]. Numerous papers describe the functions

and capabilities of SIP [108, 109, 90, 110, 111], including a book [112].

We provide here only a brief review of SIP, focusing on the capabilities that resolve the

issues we have raised above.

SIP is used to establish, change, and tear down calls between one or more endpoints in an

IP-based network. It is based heavily on the Simple Mail Transfer Protocol (SMTP) [113, 114],
1H.323 alias addresses can include URLs. However, there is no documentation on the usage of URLs in these

fields. Furthermore, alias addresses are not used throughout the specifications. Call transfer, for example, is not based
on alias addresses, and cannot use a URL

167

the basis for email, and the HyperText Transfer Protocol (HTTP) [115], the basis of the web. SIP

was also designed to leverage off the work on distributed conferencing services [116, 117, 118].

Like HTTP, SIP is a textual client-server protocol, with requests issued by the client and

responses returned by the server. SIP actually reuses much of the syntax and semantics of HTTP,

including its message structure, response code hierarchy, authentication framework, and client-

server operation. SIP is used for IP telephony functions by mapping each function to one or

more transactions. A SIP transaction consists of a single request issued by a client, and one

or more responses returned by one or more servers. SIP transactions are idempotent, just like

HTTP transactions. Also like HTTP, each SIP request is an attempt to invoke some method on

the server. RFC 2543 [89] defines six SIP methods. The most important of these is the INVITE

method, which is used to initiate a session between the client and the server.

Unlike HTTP and SMTP, SIP can run on top of either TCP or UDP. In the case of UDP,

the protocol provides its own mechanisms for reliability. The use of UDP also means that the SIP

messages can actually be multicast. Multicast allows for, among other features, group invitations

and basic Automatic Call Distribution (ACD) functions that don’t require a distribution server.

The use of UDP also provides for fast operation (avoiding the TCP SYN handshake) and better

scalability (no need to maintain TCP connection state in the kernel). When used with TCP, SIP

allows many requests and responses to be sent over the same TCP connection, as in HTTP 1.1.

4.4.1 Protocol Components

There are two components in a SIP system, user agents and network servers. A user agent is an

end system which acts on behalf of some person or automata that wishes to participate in calls. A

user agent contains, in general, both a protocol client (called a User Agent Client, or UAC) and

a protocol server (called a User Agent Server, or UAS). The UAC is used to initiate a call, and

the UAS is used to receive a call. The presence of both in a user agent allows for peer-to-peer

operation using a client-server protocol.

In addition to user agents, SIP provides for network servers. These servers are of three

different types, namely proxy, redirect and registrar. A SIP proxy acts in much the same way as

an HTTP proxy or an SMTP Message Transfer Agent (MTA). It receives a request, makes a de-

168

termination about the next server to send it to, and forwards the request, possibly after modifying

some of the header fields. A SIP proxy has no way of knowing whether the next server to receive

the request is another proxy server, redirect server, or user agent server. As such, SIP requests

can traverse many servers on their way from UAC to UAS. Responses to a request always travel

along the same set of servers the request followed, but in reverse order.

A redirect server receives requests, but instead of forwarding them to the next hop server,

it tells the client to contact the next hop server directly. It does this by responding to the request

itself using a redirect response, containing the address(es) of the next hop server(s). This is

analogous to iterative searches in the Domain Name System (DNS) [119, 120], just as a proxying

is analogous to recursive searches.

A registrar receives SIP REGISTER requests. These requests are used to establish lo-

cation state that is accessible by proxy and redirect servers for the purpose of request routing.

A UAC will periodically send REGISTER messages, binding the logical name of the entity

represented by the UA (e.g., jdrosen@columbia.edu) to the host where the UA is present (e.g.,

jdrosen@1.2.3.4).

It is important to note that the roles of user agent, proxy, redirect server and registrar are

logical ones. That is, a physical box may take on different roles for different calls, depending on

the policy and service requirements.

4.4.2 SIP Network Servers

The main function of a SIP network server is to provide for name resolution and user location, or

more generally, call and request routing. When a user wishes to place a call, it must send an IN-

VITE request to the UAS of that user. However, the caller in general will not know the IP address

or hostname of the UAS for the given user; it will have only some name which represents the

caller (usually an email address, but it can be a telephone number or some other local identifier).

Using this name, the UAC can determine a network server which may be able to resolve the name

to an IP address. This network server may, in turn, proxy or redirect the call to additional servers,

eventually arriving at one which definitively knows the IP address the user is to be contacted

at. The process of determining the next-hop server is known as next-hop routing. SIP provides

169

facilities for loop detection and prevention.

A SIP network server can use any means at its disposal to determine the next-hop server.

These include DNS, accessing databases, executing programs, and prompting users. The final

UAS contacted by the caller is determined by the composition of the decisions made at all the

servers from callee to caller. It is this fact which makes SIP servers the basis for powerful mobility

and forwarding services.

A SIP network server may determine, as a result of its next-hop routing decision, that

there are actually multiple next-hop servers which may be able to eventually contact the user. SIP

allows for a proxy server to fork an incoming request, sending it to multiple next-hop servers.

Each of these branches may generate responses; SIP provides rules for merging and passing back

the best response(s) upstream, towards the UAC. Two different types of forking are specified,

namely parallel and sequential. In parallel forking, the proxy sends a request to multiple next hop

servers at the same time. This allows for multiple phones to ring at once, for the same user. In

sequential forking, the first address is contacted, and if it does not generate a successful response,

the next address is tried.

Each SIP transaction can take a different path through servers in the network. In a typical

call, the first request is an INVITE, which may traverse many network servers on its way to the

callee. The response to the INVITE contains an address that the UAC can use to communicate

directly with the UAS. The implication of this is that SIP network servers do not need to maintain

call state. Once a transaction is complete, a SIP server has no recollection of the caller or callee.

This results in good scalability and reliability. A SIP server can crash and recover (or a backup

swapped in), and none of the calls initiated through it are affected. This also means that the

duration of and amount of state maintained at a server is small in comparison to the PSTN, where

a switch must maintain call state for the entire call duration.

Interestingly, it is not even required for a SIP network server to be stateful during a trans-

action. A proxy or redirect server can be completely stateless. This means it receives a request,

and either generates a response, or proxies the request, and then forgets everything. Proxied re-

quests contain all the state required for correct protocol operation embedded within the message.

This is nicely aligned with the Internet datagram architecture where packets contain sufficient

170

information to be individually routed. Furthermore, a stateful proxy can decide to become state-

less at any time during the transaction, and the system still operates correctly. The decision to

be stateless or stateful can be made on a call-by-call basis as desired by the administrator. This

allows for large, central SIP servers to be stateless, but for smaller, localized servers to be stateful.

Figure 4.1 depicts a typical SIP deployment of network servers, and the message flow

between them. Here, there are three domains (A, B, and C), each of which has a single SIP server

acting as an access point into and out of their networks. A user agent, Joe, in domain A makes

a call to another user, Bob. The call invitation is forwarded to domain A’s access server (1),

which attempts to find the callee in domain B and C by forking the request. The request arrives at

domain C (3), but the user is unknown at this location, so an error response is returned (4). The

request at domain B (2), however, is forwarded to a local server internal to domain B (5), where

it finally reaches the UAS (6). The response is then forwarded back along the same path to the

caller (7,8,9,10).

SIP
Network
Server A

INTERNET
BACKBONE

SIP
Network

SIP
Network

SIP
Network

SIP
Network

Server B

Server B1

Server B2

Server C

SIP User Agent

1

2

3

4

5

6 7

8

9

10

Figure 4.1: Typical SIP deployment

Recent work on SIP has described a network component referred to as a back-to-back

user agent, or B2BUA [121]. This element is a completely stateful device which acts as a UAS

for calls it receives, and then re-initiates them to the callee, acting as a UAC. A B2BUA enjoys

171

none of the scale and fault tolerance benefits that a proxy does, but is capable of owning complete

control over the call, much like a PSTN switch (even though the media does not flow through it).

4.4.3 SIP Messages

SIP messages are either requests or responses. Messages are sent as text. Requests start with

a request line, and responses start with a status line. Both message types are followed by a

series of headers, each of which is a header name, followed by a colon, followed by a header

value. Headers are terminated by a carriage-return and line-feed. After the headers, the messages

contain an optional body, separated from the headers by a blank line. Headers are used to convey

information needed by SIP entities for processing of the request or response. The bodies are

opaque to SIP, and can contain anything. Frequently, they contain Session Description Protocol

(SDP) [81] messages, as we discuss below. However, they can contain any type of content.

INVITE sip:ann@lucent.com SIP/2.0
Via: SIP/2.0/UDP 131.215.131.13;maddr=239.112.3.4;ttl=16
Via: SIP/2.0/TCP 10.0.1.1;received=128.13.44.52
From: John Smith <sip:jsmith@lucent.com>
To: Arun Netravali <sip:ann@lucent.com>
Subject: Raise
Call-ID: 132059753@mypc.domain.lucent.com
Content-Type: application/sdp
CSeq: 4711 INVITE
Content-Length: 187

v=0
o=user1 51633745 1348648134 IN IP4 128.3.4.5
s=Interactive Conference
c=IN IP4 224.2.4.4/127
t=0 0
m=audio 3456 RTP/AVP 0 22
a=rtpmap:22 application/g723.1

Figure 4.2: Typical SIP INVITE message

A typical SIP INVITE request message is shown in Figure 4.2. The request line in a

SIP request message contains the method, the Request-URI, and the protocol name and version

(which is always SIP/2.0). The Request-URI plays a central role in SIP. It identifies the target

of the request at the next-hop server. The request method specifies the processing desired by the

client. The SIP specification [89] defines several methods. These are INVITE, BYE, OPTIONS,

ACK, REGISTER and CANCEL. INVITE is used to invite a user to a session, or to modify

172

the media components of an existing session. BYE is used to “hang up”, or terminate a session.

OPTIONS is used to solicit information about the capabilities of the callee, but does not set up

a call. ACK is used for reliable message exchanges. REGISTER creates address bindings, and

is discussed in Section 4.4.6. CANCEL is used to terminate a pending request (almost always an

INVITE), but does not undo a completed request.

Responses are formatted almost identically to requests. They differ in the first line. This

line, called the status line, conveys a response code and a reason phrase. The response code is a

numerical code that indicates the results of the request processing. Responses codes are integers

from 100 to 699. Only the hundreds digit is significant as far as mandatory processing rules

are concerned (this follows HTTP 1.1 operation [115]). The reason phrase is a textual string,

fit for display to a human user, that describes the results of the request processing. Response

codes from 100 to 199 are known as provisional responses. These responses contain optional

progress information. They are delivered unreliably from the UAS to the UAC (although we

have defined a SIP extension which allows them to be delivered reliably [122]). An example

provisional response code is 183, which usually carries a reason phrase of “Call Progressing”.

Another example is 180, which usually carries a reason phrase of “Ringing”. A UAS can send as

many provisional responses as it likes. However, it can send only a single final response. Final

responses, which have response codes from 200 to 699, complete the transaction. Codes 200-299

indicate success (i.e., the call was accepted, in the case of INVITE). Codes 300 to 399 indicate

redirection. Codes 400-499 indicate client error (such as a malformed request). Codes 500-599

indicate server failure (such as overload). Finally codes 600-699 indicate global failure.

As SIP is a textual protocol, generation and parsing of its messages is easily done with

text processing languages such as perl. Furthermore, its compliance to RFC822 [123] formatting

rules means existing HTTP or SMTP parsers can be used directly for lexigraphic analysis of

messages. It also simplifies debugging, development, and extensions.

4.4.4 Addressing and Naming

To be invited and identified, the callee has to be named. Since it is the most common form of

user addressing in the Internet, SIP defines its addresses as URLs [124], similar in structure to

173

the mailto URL [125]. These are generally of the form “sip:user@address”, where the address

can either be a valid DNS name, or an IP address. When identifying a user at a specific host,

the address will typically be a hostname or IP address. When used as a location independent

identifier, the address is usually a domain name. The user portion of the URL identifies the user,

process, system, or service at the specific address. The user portion can be a telephone number

(useful when the address is that of a gateway to the PSTN), or any character string.

The use of email-style addresses as SIP addresses enables a scalable means by which a

UAC can deliver a request to a SIP server which likely knows how to forward the request to the

final callee - the Domain Name System (DNS). By using a series of DNS lookups, searching for

service (SRV), canonical name (CNAME), and address (A) records, the caller can determine the

address of a server which has naming authority for all users within the domain [126].

4.4.5 Initiating, Modifying, and Terminating Calls

To initiate a call, the UAC formulates an INVITE request. The From header is populated with the

SIP URL identifying the caller, and the To header is populated with the SIP URL identifying the

callee. The Contact header is populated with the address to be used for SIP message exchanges

for the rest of the call (similar to the Reply-To header in email). The Request-URI is also

populated with the SIP URL identifying the callee. The body of the request might contain SDP

(see Section 4.4.7). The request is then sent to the host identified by the address in the SIP

URL in the Request-URI. This host is likely a proxy server. The proxy server will make a

routing decision, and determine the next-hop server to forward the request to. It then rewrites the

Request-URI to contain the URL identifying the resource to contact at the next-hop server. As

the request traverses through the proxy network, the Request-URI is rewritten by each proxy.

As a result, it is the Request-URI which is used as the input to the routing and policy decision

process at each element, including proxies and the UAS.

Once the INVITE arrives at the UAS, the end user or service is alerted about the incoming

call. If the call is accepted, a 200 “OK” response is generated. This response contains copies of

the To and From headers from the request, amongst others. The UAS also adds the Contact

header, which indicates the address to use for message exchanges for the remainder of the call. If

174

the call is not accepted, a 400-class response (meaning any response from 400-499) is returned.

Typically, the 486 “Busy Here” status code is returned to indicate that the callee is busy. A 200

OK response will almost always contain SDP. Finally, the caller generates an ACK request to

acknowledge receipt of the response. The ACK may also contain SDP.

To deliver these messages reliably, the UAC retransmits the INVITE periodically (with

an exponentially increasing retransmission interval), until receipt of a provisional response. At

that point, retransmissions cease. When the final response is sent by the UAS, it retransmits the

response periodically (also with an exponentially increasing retransmission interval), until receipt

of the ACK.

At any time during the call, either the caller or callee can issue a re-INVITE. A re-INVITE

is not a new SIP method. It is simply a regular INVITE that just happens to be sent in the middle

of a call. It is used to update the media session associated with the call. New media sessions

can be added, existing ones can be removed, and the IP address and ports for a particular media

session can be changed.

Donovan has defined the INFO method [127] as a new SIP request message that can also

be issued during a call. It is used to exchange application related information. The semantics

depend on the headers any body in the request. For example, the Call-Info header, which can be

present in any request or response message, informs the recipient of the message to render the

content at the URL present in the header. If an INFO request contains this header, the recipient

displays the content. The INFO method is also used to assist in interoperability with the telephone

network [128].

To hang up the call, either caller or callee can issue a BYE request. The recipient responds

with a 200 OK, and the call is terminated.

4.4.6 Registrations

The SIP REGISTER request message is used to convey location information to a SIP server,

known as a registrar. Generally, the registrar is co-located with a proxy server. It acts as a

repository of information on how to route calls. When a call arrives at a proxy, it can route

the request based on static or programmed policies, or it can look up the Request-URI in the

175

registrar’s database, and determine the next-hop address(es) to use.

In the most general sense, the REGISTER request is a method for installing address

mappings into the registrar. The address in the To field of the REGISTER request is mapped to

the addresses in the Contact headers of the registrations. The Contact headers can also contain

information to assist the proxy in selecting an address to use. Specifically, RFC 2543 defines the

q parameter as a numerical value, from 0 to 1, that indicates a preference for a specific address. A

q value of one indicates the highest preference. A proxy will generally try the highest preference

address first, and if the user is not there, try the next lowest priority.

The address mappings installed by the REGISTER request are soft-state, and must be

refreshed by the UA. As a result of this, the REGISTER message also acts as a form of con-

nectivity status. If a user has an active registration, they are “online” and connected to the SIP

system. If they do not have an active registration, they are not connected, and thus not available

to receive calls.

Since REGISTER is a normal SIP request, it can contain a body, as can the response

to registrations. The usage of bodies in REGISTER has been proposed as a means to upload

call processing logic to proxy servers [129]. Furthermore, the body of a REGISTER response

can contain configuration information useful to the user agent. These may include speed dial

button configurations, additional addresses (allowing for PBX-like functionality, whereby the

server chooses the addresses used by each client), or a call log. Using the multipart MIME

formatting rules, and the capability negotiation features of HTTP, new types of information can

be added as time passes.

4.4.7 Session Description Protocol Usage

The Session Description Protocol (SDP) [81] is not really a protocol at all. Rather, it is a syntax

for a document that is used to describe multimedia sessions. It was initially applied to describe

conferences on the MBone, by conveying it within Session Announcement Protocol (SAP) mes-

sages [68]. It later found application to unicast sessions within SIP.

A simple SDP message is shown in Figure 4.3. It is composed of a series of lines, each

separated by a carriage-return line-feed. Each line is a single letter, representing a parameter,

176

v=0
o=mhandley 28090844256 28090842807 IN IP4 126.16.4.5
s=SIP Tutorial
t=0 0
m=audio 49170 RTP/AVP 0 86
c=IN IP4 126.16.4.55
a=recvonly
a=rtpmap:86 G729
m=video 17680 RTP/AVP 90
c=IN IP4 126.16.4.56
a=sendrecv
a=rtpmap:90 H263

Audio media stream

Video media stream

Figure 4.3: SDP message example

followed by an equal sign, followed by the value of the parameter. The important sections of

the SDP are in the shaded boxes. Each box begins with an “m line” which describes a media

stream in the session. It indicates the type of stream, followed by the port number it is to be sent

to, followed by a transport indicator (which is almost always RTP/AVP, indicating usage of RTP

and its audio-visual profile [130]). After that is a listing of numbers, indicating the payload types

supported for the stream.

The “c line” contains the connection address, and indicates the IP address where the

media should be sent to. SIP allows this to be 0.0.0.0, indicating that media should not be sent at

all. This is used to enable media-on-hold. An SDP with a c line indicating an address of 0.0.0.0

is referred to as “held SDP”.

Streams can be send-only, receive-only, or bidirectional (sendrecv), as indicated by the

“a line” which contains many different types of attributes. When used with SIP, a stream that is

unidirectional will be send-only for one side, and receive-only for the other.

The rtpmap attribute is used to support dynamic payload types, where the mapping from

an RTP payload type number to a specific codec is signaled for the call. For static payload types,

the mappings are specified in RFC 1890 [130]. For example, payload type 0 is PCM µ-law.

SIP usage of SDP is based on a two-way offer-answer model. One side of the call “offers”

an SDP for the session, and the other side “answers”. Typically, the offer is carried in the INVITE,

and the answer in the 200 OK. However, it is allowed for no SDP to be present in the INVITE, in

177

which case the offer is made in the 200 OK, and the answer in the ACK.

The SDP for the answer has to follow a set of guidelines for its construction. For each

m line in the offer, there must be a corresponding m line in the answer. If a media stream in the

offer is to be rejected, the port number for the media stream in the answer is set to 0. The set of

codecs listed for a stream in the answer has to overlap with the set of codecs offered in the offer.

If a stream is offered as send-only, the answer must be receive-only, and vice-a-versa. The IP

address and port for the stream in the offer indicate where the offering-party would like to receive

media for the stream. The IP address and port for the stream in the answer indicate where the

answering-party would like to receive media for the stream.

As the body is opaque to SIP, but described using MIME [131] syntax and semantics,

SIP can use other media description formats besides SDP. Possibilities include H.245 capability

descriptors, SMIL [132] presentation descriptions, or an XML [133] formatted description of a

new video codec. As these and other descriptions [134] appear, they are as easily incorporated

into SIP as a new image type is incorporated into HTTP.

4.4.8 SIP as a Tool for New Services

We have argued that the weakness of H.323 and BICC is their inability to readily provide new

services. In particular, these protocols cannot provide services that combine voice and video with

web, instant messaging, presence, and email. SIP, however, has several components that make it

ideally suited to provide these kinds of services.

Broadly speaking, SIP supports combined services because of two features it provides.

One is its support of MIME, and the other is its ubiquitous support for URLs and URIs as an

addressing format. These are explained in detail below.

4.4.8.1 MIME

MIME stands for Multipurpose Internet Mail Extensions, and is specified in RFC 2045 [135].

MIME is now used in a number of other protocols, including HTTP. It has become the defacto

standard for describing all sorts of content on the Internet. Nearly every audio format, every

video type, and every image encoding is a registered MIME type. The MIME headers allow the

178

type of the data, its encoding, and its size to be described. MIME headers also allow clients and

servers to negotiate the types of content they understand. MIME also allows for multipart, which

means email or a web response can contain multiple MIME objects. MIME also enables security;

a protocol called S/MIME [136] allows an email message to contain a MIME part that contains a

signature. At its core, MIME is important because of its sheer ubiquity; any type of data which

can be reasonably carried over the web or in email is registered MIME type.

SIP uses MIME. SIP messages carry bodies, just like web and email do. In the simplest

case of a basic call setup, the body contains information, encoded in the SDP, on the audio codecs,

RTP ports and IP addresses used for the media. However, SIP messages can also contain other

types of bodies; any registered MIME type is allowed. When used with SIP, these bodies can be

used to convey a variety of important pieces of information:

Display data: The content contains information for display, to provide additional information

related to features, services, or call signaling. The receiving SIP entity should optionally

display it using the default viewer for that MIME type. As an example, a SIP INVITE

message might contain a JPEG image for display, thus enabling a visually enhanced caller

ID. A SIP INVITE message might also contain a vCard [137] to identify the caller.

Billing data: The information can be for billing or settlement purposes. It can contain tokens

(such as an Open Settlement Protocol (OSP) token [138]) which authorize the user to make

a call.

Signaling data: The information can convey additional signaling data. For example, when mak-

ing a call from the PSTN to the PSTN with IP serving as the toll bypass, the SIP messages

can contain ISUP messages. This allows for transparent operation of SS7 telephone net-

work signaling, yet it also allows call completion to non-ISUP aware devices [128].

Code: The data in a SIP message can be code to execute in order to provide some enhanced

service [139, 129].

URLs: The information can be a list of URLs that point to any of the above pieces of data.

179

Of course, SIP bodies might be used for additional purposes down the road. Using the

MIME headers for negotiating supported types, backwards compatibility can be maintained even

as new uses are discovered.

MIME is an important enabler of new services. Because many combined services involve

web and email, enabling them, at the core, comes down to allowing SIP systems to add, process,

and transmit MIME content.

As an example, the simple combined service we described in Section 4.2, CFNA-W, is

enabled by having a SIP server return HTML content in a no-answer response.

4.4.8.2 URIs

A URI is a Uniform Resource Identifier [124]. Many users are familiar with the URL, which is a

Uniform Resource Locator. A URI is a generalization of a URL. A URI identifies, in some way,

a resource. A URL identifies a resource by its location, specifically, what host and path it exists

on. Another way to identify a resource is by its name. For example, a book can be defined by its

ISBN number. Uniform Resource Names, or URNs [140], are another type of URI which identify

resources in this way.

URIs have become the standard Internet way of application-layer addressing. Web pages

are identified by HTTP URLs. Email is sent by clicking on mailto URLs. As new applications

are developed, they define URI types as well. As a result, URIs have become the universal way

to access Internet applications.

Rather than defining some new type of address space, SIP uses URIs, and only URIs, for

addressing. Despite the fact that SIP has its own URI, SIP messages can contain any other type

of URI wherever a SIP URI can appear. It is this fact that enables many of the features discussed

below.

4.5 Implementation

To verify the correctness of SIP, and validate it as a useful tool to enable new services, we imple-

mented a SIP proxy and redirect server, named gosSIP. The server was written in ’C’ for Solaris,

180

and contained roughly twenty five thousand lines of code. The server is a complete SIP proxy

implementation, including support for UDP and TCP, record-routing2 , basic and digest authen-

tication, proxy and redirect modes, recursion, loop detection, request merging, call cancellation,

registrations, and parallel and sequential forking. To enable service creation, we implemented

CPL [141] and SIP CGI [142] (to our knowledge, the first implementation of both of these). The

server supports routing of requests that contain telephone numbers in the Request-URI, using

a longest-prefix-match routing table. For example, a single table entry can direct the proxy to

forward all calls for numbers beginning with +1212 (New York City) to gateway.com. The

server supports a cache of call routing decisions, so that requests for a specific SIP URL that has

appeared previously are resolved rapidly.

We wrote utilities for adding and configuring users to the system. We also defined an

extensive configuration language, using XML, which allowed us to specify any one of over fifty

configurable parameters. The server also supported flexible logging that allowed generation of

arbitrary text logs, similar to the logging capabilities of the Apache [143] web server.

In the sections below, we provide an overview the architecture of this system and describe

several services we implemented with it.

4.5.1 Events and Threading

The gosSIP server is an event-based multi-threaded software system. Asynchronous events are

generated by the arrival of packets on the network, the firing of a timer, or the transition of certain

state machines to the completed state. These events are placed into event queues, and processed

by worker threads using the well-known worker thread pattern. The overall threading architecture

is depicted in Figure 4.4. There are four types of threads:

Message thread: This thread listens on sockets for messages from the network. It is the only

thread that ever listens for network packets, requests or responses, UDP or TCP. The mes-

sage thread uses a single select() call to listen for packets. We felt that using a single

select call, rather than using a number of threads each listening on a single socket, would be
2Record-routing is a SIP capability that allows a proxy to request to be included in subsequent signaling between

participants

181

Message

Thread

Alarm
Thread

Dispatcher

Thread

Worker Thread

Worker Thread

Worker Thread

Worker Thread

Event Queue

Event Queue

Event Queue

Event Queue

Event Queue

Figure 4.4: gosSIP threading architecture

more efficient. When a complete packet has arrived, it is parsed, and the resulting message

encapsulated in an object and inserted into the event queue read by the dispatch thread.

Alarm thread: The alarm thread handles timers for all the other components in the system.

Other threads can schedule timers to fire at a specific time, and pass an event to be placed

onto the event queue once it fires. The alarm thread uses a heap data structure to order the

timers. It sleeps until the next timer is to fire, and when it does, wakes up and places the

scheduled event into the dispatchers event queue.

Dispatch thread: This thread reads from a queue of events, and dispatches them to the event

queue that is processed by a specific worker thread. The dispatch thread may create a new

worker thread if needed, or place the event into the queue of an existing worker thread.

It can schedule work round-robin or randomly (but uniformly) distributed across worker

threads.

Worker thread: This thread is responsible for the actual processing of events. It blocks until an

event is inserted into its work queue. When that happens, it wakes up, and processes the

event. Once its finished, it checks if there are more events in the queue. If there are, the

182

next event is processed (and once that is completed, it checks for more events, and so on).

If there are no events in the queue, the thread blocks, waiting for an event to be inserted

into its work queue. The number of worker threads is configurable.

There are numerous events the system knows about:

Message event: a message has arrived from the network.

Client packet event: the client state machine reports a significant packet (i.e., not a retransmis-

sion).

Server packet event: the server state machine reports a significant packet (i.e., not a retransmis-

sion).

Client error event: the client state machine reports an error, typically a timeout or socket failure.

Server error event: the server state machine reports an error, typically a timeout or a socket

failure.

Client completion event: the client state machine has completed.

Server completion event: the server state machine has completed.

Client timer event: a timer associated with the client machine has expired.

Server timer event: a timer associated with the server machine has expired.

Registration timer event: a registration timer has expired.

TCP close event: a peer has closed a TCP connection.

4.5.2 Processing Architecture

Worker threads handle events. The events above (with the exception of the registration timer)

are all associated with a SIP transaction. A SIP transaction, as far as gosSIP is concerned, is

the set of messages and timers initiated by a request (INVITE, OPTIONS, BYE, etc.), including

CANCELs and ACKs and responses associated with that request. For example, a new transaction

183

is initiated by an INVITE request. The responses received to that request, and any ACKs or

CANCELs received for that request, are all part of the same transaction.

Handling of events for a transaction are handled by three cooperating sets of state ma-

chines, namely server machines, client machines, and the mediator machine. The purpose of

these machines is as follows:

Server state machine: The server state machine receives requests from the network, and sends

responses. It handles response retransmissions, TCP/UDP details, and automatic genera-

tion of responses for errored requests.

Client state machine: The client state machine sends requests on the network (more specifi-

cally, one request and any retransmissions, an ACK, or CANCEL for that one request) and

receives responses to the request. It handles request retransmissions, TCP/UDP details.

Mediator state machine: The mediator state machine mediates between the client machines,

server machines, and application. It coordinates these by passing information from one to

the other after applying the appropriate behavior.

Each transaction has its own instance of these state machines. Transactions don’t share

state. The important implication of this is that gosSIP is not a call stateful server. In other words,

if a call is setup with an INVITE request, and later terminated by a BYE request, gosSIP does not

know about the call itself. As far as gosSIP is concerned, two independent transactions executed.

Each transaction contains a single mediator state machine. There is usually a single server

machine, but there may be more than one. This happens when request merging occurs; that is,

the same request is received from different upstream SIP servers. If the proxy forks, there are

multiple client machines, one for each branch.

The interaction between these state machines are shown in Figure 4.5. In the figure,

requests are shown in solid, responses as dotted, and application interactions as dashed lines. Re-

quests from the network are received and processed by the server state machines. If the messages

are significant events (i.e., not retransmissions), the server state machines create server packet

events, which are sent to the dispatcher and later executed by the mediator machine. The server

machine effectively hides retransmissions, timers, TCP/UDP and network level details from the

184

Server Machine
Client Machine

Client Machine

Client Machine

Mediator Machine

Module
Application

Proxy Server

Request Response API

Figure 4.5: gosSIP state machine architecture

mediator. The mediator state machine is the central intelligence of the server. It uses a server

API to communicate significant events to the application. The application can then instruct the

mediator on how to proceed. The mediator can create client state machines, as needed. Each

client machine handles forwarding of a request onto the network. So, if a server forks with two

messages, two client state machines are created. As responses are received, they are handled

by the appropriate client machine. If the response is significant (i.e., not a retransmission), it is

forwarded to the mediator. The mediator uses the main server API to find out what to do next. If

the response is to be forwarded downstream, the message is processed and then past to the server

state machine, which sends it.

Communication between the state machines can occur in one of two ways. The first

is by direct function call; one machine can call the update function of another machine. The

other way is through event passing. An event can be generated, fed into the dispatcher, and

then executed by a worker thread. As a general rule, communications from the client and server

machines to the mediator are through event passing, and communications from the mediator

to the client and server machines is by function call. This asymmetry is needed because the

main processing routine in the mediator state machine is not re-entrant. If the client or server

machines could directly call this processing routine, cases could arise where a re-entrant call is

made. Specifically, if the mediator is processing an event, and calls the client machine processing

185

routine, which tries to send a message, but fails immediately, so that the client state machine calls

the mediator machine’s processing routing to report the event, a re-entrant call to the mediator

processing routine would occur.

The server API is used to communicate with the application module. The server API has

numerous callbacks that inform the application of events; these events abstract much of the detail

of SIP away, but still contain the full information on SIP messages as needed. The application can

then exert control over the server by passing it instructions, or directives, on future transaction

processing. The directives are service primitives, combined by the application for a complete

service. They are described in Section 4.5.6.

Within gosSIP, one and only one application exists at a time. The initial application is al-

ways CPL+. CPL+ is an enhanced CPL, designed to support administrator-defined services. CPL

was designed to be used for end-users to specify services [144]. In our application, the adminis-

trator uses it to specify the overall service delivered by the proxy. To support this application, we

added additional switches and actions to CPL. Specifically, we have added switches based on the

request method (CPL assumes INVITE, but CPL+ can handle any method), the action parameter

from a registration, and the source of the request (either the network or an internally generated

request). Additional lookups are defined for the telephone routing table and the cache. An au-

thenticate action was added, allowing the administrator to specify whether the request needs to

be authenticated for further processing. A register action was also added, which causes a REG-

ISTER request message to be processed according to the SIP specification. Actions were also

specified to allow the invocation of a CGI script or the CPL script uploaded by a user.

An example of a CPL+ script is shown in Figure 4.6. This script configures the server

to accept registrations for the mci.com domain, and to reject all others. All incoming requests

except REGISTER are processed by looking up the Request-URI in the registration database.

If a match is found, a redirect response is issued, otherwise, a not-found response is issued.

4.5.3 Server State Machine

If the event being processed is a request from the network, it is handled by the server state ma-

chine. The function of the state machine is to receive requests from the network, handle retrans-

186

<call>
<method-switch>
<register>
<string-switch field="to" subfield="domain" depth="2">
<string is="mci.com">
<register/>

</string>
<otherwise>
<respond status="error"/>

</otherwise>
</string-switch>

</register>
<otherwise>
<lookup source="registration">
<success>
<redirect/>

</success>
<otherwise>
<respond status="notfound"/>

</otherwise>
</lookup>

</otherwise>
</method-switch>

</call>

Figure 4.6: Example CPL+ script

missions of requests, send and retransmit responses to the network, handle malformed requests

from the network, and receive CANCEL and ACK messages for a request from the network. The

server state machine worries about the details of retransmission timers, TCP vs. UDP rules, and

responses to CANCELs. The server state machine hides these details from the mediator state ma-

chine, so that the mediator need not concern itself with transport details or timers. To accomplish

this, the server machine informs the mediator machine of ”significant” events. Significant events

are generally message arrivals that cause a state change in the server machine. Not all message

arrivals cause state transitions in the server state machine.

The server state machine has seven states. These states mirror the states for server INVITE

handling as specified in RFC 2543. However, we have integrated the non-INVITE state machinery

187

as well, so that a single machine handles both cases, and also modified it to cover proxy handling

as well. The states are:

SERVER STATE INITIAL: This is the state the server machine is in initially, before it has pro-

cessed any messages or timers. Note that this state is transient. It is the initial state first en-

tered when the machine is created. However, a machine is only created when a message ar-

rives, so the machine will immediately transition to SERVER STATE CALL PROCEEDING.

SERVER STATE CALL PROCEEDING: In this state, the server has received a request for a

new transaction, and generated a provisional response. No final response has been sent.

SERVER STATE FINAL STATUS: The final response to the request has been sent. In SIP,

INVITE requests are retransmitted periodically. So, this state handles these transmissions.

In addition, for non-INVITE requests over UDP, the response is retransmitted when a re-

quest retransmission arrives. This state handles this case as well. The server exits this state

if it receives an ACK (for INVITEs), or after a timeout (for non-INVITE).

SERVER STATE CONFIRMED: For an INVITE request, an ACK has been received. This

state exists to handle any late messages for the transactions, such as ACKs or CANCELs

that have been delayed. It is exited by means of a timer.

SERVER STATE TRANSPARENT: In this state, the server has sent a 200 response to an IN-

VITE, said response having been received from a downstream server. The SIP spec speci-

fies that reliability for 200-class responses to INVITEs is end-to-end, not hop-by-hop. For

this reason, when the server state machine is in this state, it passes all ACKs it receives to

the mediator (so they can be forwarded to a client machine and onto the network). Further-

more, any 200-class responses it receives from the mediator get sent to the network. In this

regard, the ACKs and 200 OKs pass transparently through the server, and thus the name of

this state.

SERVER STATE CANCELLING: The server state machine has received a CANCEL request

for the transaction. It has sent a response to the CANCEL, and will retransmit the response

188

to the CANCEL if a request retransmission is received. Retransmissions of the response to

the original request no longer take place. Responses to the original request are ignored.

SERVER STATE TERM: The server state machine is finished. No further state changes can

take place, and no further processing occurs. When the server machine first enters this state,

it sends a server completion event to the mediator. The mediator uses this information to

determine if it is safe to destroy the entire transaction and its associated mutexes.

The server state machine also makes use of some static variables to control behavior.

These static variables include timeout values, the number of response retransmissions it will

perform before giving up, and the IP address of the gosSIP server. The timers and retransmission

counter takes on default values; these can be changed through simple API functions which simply

set these variables. The address of the gosSIP server is used in the message validity checks

performed by the server. Specifically, it is used for loop detection.

4.5.4 Client State Machine

When a response is received from the network, it is processed by the client state machine. The

function of the machine is to send requests from the mediator onto the network, handle retrans-

missions of those requests, send CANCEL and ACK messages, and handle responses to the

CANCEL and ACK messages. The client state machine worries about the details of retransmis-

sions timers, transport protocols, and malformed responses. The client state machine hides these

details from the mediator state machine. To accomplish this, the client machine informs the me-

diator machine of significant events. Significant events are generally response arrivals that cause

a state change in the client state machine.

Each client state machine handles a single proxied request. If gosSIP forks a request to

three downstream SIP servers, three independent client state machines are created. Each of these

three state machines is independent. The state machines do no cooperate with each other. They

report events to the mediator as if there were no other client machines. This allows the mediator

to worry about forking issues, while the client machines can focus on getting the requests to the

next server and receiving the responses.

189

The client state machine has eight states. The state machine represents the union of the

INVITE and non-INVITE client machines specified in RFC2543, adapted for proxy behavior. The

states are:

CLIENT STATE INITIAL: This is the state the client machine is in initially. It is in this state

when the machine is first instantiated by the mediator. Like the initial server state, this

state is transient. When a client machine is created, it is in this state. However, a client

state machine is created only when there is a message to send, so it will transition to the

CLIENT STATE CALLING state quickly.

CLIENT STATE CALLING: In this state, the client machine has sent a request on the net-

work. It is retransmitting the request, but has not yet received any response.

CLIENT STATE CALL PROCEEDING: In this state, the client machine has received a pro-

visional response. If the request was non-INVITE, this causes the period of request trans-

missions to increase to 5 seconds. For INVITE requests, request retransmissions are stopped

completely.

CLIENT STATE FINAL STATUS: A final response to the request has been received. For

INVITE requests, the client machine may be sending an ACK (it will not for 200-class

responses).

CLIENT STATE CONFIRMED: In this state, the server machine is largely finished. It is just

waiting around to handle any spurious response retransmissions (which it discards). After

a specific amount of time, the client machine transitions to the CLIENT STATE TERM

state.

CLIENT STATE TRANSPARENT: In this state, the client has received a 200-class response

to an INVITE. This event is reported to the mediator. In addition, any subsequent 200-class

responses (be they retransmissions or new ones) are reported to the mediator. Similarly,

an ACK requests received by the mediator are forwarded to the next hop SIP server. This

allows for ACKs and 200 OK’s to be passed transparently through the client machine, and

190

thus the name of the state. This is required for reliability of 200 OK’s to INVITEs to be

end-to-end.

CLIENT STATE CANCELLING: The client machine has sent a CANCEL message for the

original request. It will no longer transmit the original request. Responses to the original

request are ignored. The client machine awaits a response to the CANCEL.

CLIENT STATE TERM: The client machine is finished. No further state changes can take

place, and no further processing occurs. When the client machine first enters this state,

it sends a client completion event to the mediator. The mediator uses this information to

determine if it is safe to destroy the entire transaction and its associated mutexes.

The server machine also makes use of some static variables to control behavior. These

static variables include timeout values and the number of response retransmissions it will perform

before giving up. The timeout value and retransmission counter take on default values; these can

be changed through simple API functions.

4.5.5 Mediator State Machine

The mediator is the heart of the gosSIP server. It mediates between the client machines, server

machines, and the application. The client and server state machines place significant events,

as defined above, into the dispatcher’s event queue. These get processed by worker threads,

which invoke the main mediator event processing routine. The mediator informs the application

of these events, and waits for instructions on how to process them. In its role as mediator, the

mediator machine decides when and where to proxy requests to, and what to do with the responses

that arrive. It chooses, among the responses received by the client state machines, the one(s) to

forward upstream. It is for this reason that much of the mediator machine is concerned with

forking proxy processing.

The interaction with the application is through the main server API. In gosSIP, CPL+ is

the application that runs initially. The CPL+ application makes a determination about what to do,

and then hands off control to primitive modules, such as proxy, redirect and respond functions.

This is discussed in more detail below.

191

The mediator state machine has nine states. These states are extracted from the forking

proxy behavior specified in the code in Section 12.4 of RFC 2543 [89]. These states are:

MEDIATOR STATE INITIAL: This is the state the mediator is in when first instantiated. This

state is transient, but to a lesser degree than the client and server machines. When a request

first arrives, and no context exists, one is created containing a server machine and mediator

machine, both of which are in their initial states. The server machine immediately pro-

cesses the request and then inserts an event to be processed by the mediator. This event

will cause the mediator to transition out of the initial state. During the time between when

this event is scheduled and executed, the mediator will remain in the initial state.

MEDIATOR STATE PENDING: The mediator has created at least one client state machine,

and proxied at least one request. Some responses to these proxied requests may have been

received, but none of them are 200 or 600-class responses. Furthermore, there is at least

one proxied request for which no response has been received. No response has been sent

yet.

MEDIATOR STATE GOT200: The mediator has gotten a 200-class response to a proxied re-

quest, and there are still proxied requests for which no response has been received. No

response has been sent yet.

MEDIATOR STATE GOT600: The mediator has gotten a 600-class response to a proxied re-

quest, but no 200-class responses. There are still proxied requests for which no response

has been received. No response has been sent yet.

MEDIATOR STATE FINISHED 200: The mediator has received responses for all the requests

it proxied, and at least one of them was a 200-class response. No response has been sent

yet.

MEDIATOR STATE FINISHED 600: The mediator has received responses for all the requests

it proxied, and at least one of them was a 600-class response. None of them were a 200-

class response. No response has been sent yet.

192

MEDIATOR STATE FINISHED: The mediator has received responses for all the requests it

proxied. None of them were a 200 or 600-class response. No response has been sent yet.

MEDIATOR STATE TRANSPARENT: The mediator has received a 200-class response, and

has sent a 200-class response.

MEDIATOR STATE TERM: The mediator has sent a non-200-class response.

The reason these various states exist is that one of the server API callback functions,

onReadyCallback(), needs them. This callback is called whenever the server receives a

response which leads it to believe that it is ready to send a final response. ”Ready” is defined in

the SIP spec as having received:

• any 200-class response;

• a 600-class response, so long as no 200-class response has been received;

• the lowest-numbered response, so long as all responses have been received, none of which

is a 200 or 600-class response.

The onReadyCallback() is also called whenever the response to be sent changes.

Here is an example. The mediator causes three requests to be proxied, to A, B, and C, re-

spectively. A 600-class response is received from A. This causes the mediator to transition

to MEDIATOR STATE GOT600. The onReadyCallback() function is called, indicating

the mediator believes it should send this response. However, the application does not tell it to

do so. Then, B sends a 200-class response. This causes the mediator to transition to MEDI-

ATOR STATE GOT200, and call the onReadyCallback() function once more, this time

telling it that the 200-class response is the one it believes it should send. Again, the application

says nothing. Finally, C also sends a response, which is a 600-class response. The mediator

transitions to MEDIATOR STATE FINISHED 200. The onReadyCallback() function is

not called, since the 600-class response is not ”better” than the 200-class response. However, the

onFinalCallback() function is called (since a final response to a request has been received).

Presumably, an application which does not send a response when onReadyCallback() is

193

called will set the onFinalCallback() to ensure it is called again with a response from

some other request.

Now, should the application tell the mediator to proxy the request to D, the mediator

transitions back to MEDIATOR STATE GOT200, since there is now a proxied request for which

no response is received.

Whenever almost any event occurs (server packet, client packet, server error, client error),

the mediator notifies the application with a callback. The mediator performs any directives passed

from the application in the return value of the callback. The mediator is also capable of a default

behavior when the callbacks are not set, or when the application explicitly tells the mediator to

perform the default behavior. The default behavior is hard coded into the state machine, and

represents the recommended behavior from the SIP specification, as outlined above.

The mediator is also responsible for deciding when its time to destroy the transaction

state. To do this, it keeps track of the server and client completion events it has received. When-

ever another such event is received, it checks if completion events have been received from

all client and server machines. If this is the case, and the mediator itself is done (MEDIA-

TOR STATE TERM or MEDIATOR STATE TRANSPARENT), the mediator calls DestroyContext(),

which sets the field marking the context for destruction. When the mutex around the transaction

state is released, this flag is checked, and the state destroyed if no other threads are attempting to

lock the mutex.

4.5.6 Server API

The server API allows applications to control the behavior of the proxy. The API is a transac-

tional one. This means that its callbacks and controls are on a transactional basis, not on a call

basis. The callbacks from the mediator to the application inform the application of all signifi-

cant events in the lifecycle of the mediator machine. This includes final responses received to

any proxied requests, reception of the best response (as discussed above), provisional responses,

request cancellations, and acknowledgments.

The API also allows the application to control processing in the server through directives.

Directives are structures that tell that proxy what to do. Directives can be passed to the mediator

194

through direct function calls by the application. Alternatively, directives can be passed as return

values from a callback. The directives supported by the server are:

PROXY: The proxy directive tells the server to proxy a request. It includes a request fragment

that allows the application to modify the request in some way (by adding a removing a

header, for example), the destination URI to send to, and a set of callbacks to be invoked

with changes in the client state machine.

SEND: Send is like proxy, but does not use the client state machines. It is used to support

stateless proxies.

RESPOND: Respond causes the proxy to send a response. The actual response is enclosed.

CANCEL: This tells the proxy to cancel all pending branches.

ACK: This tells the proxy to send the included ACK.

FORWARDRESPONSE: This tells the proxy to forward a previously received response up-

stream. The directive includes a reference to the response. If a reference of value zero is

included, the server sends the best response received so far.

TERMINATE: This forcibly destroys all transaction state.

REGISTER: This tells the server to process the registration it just received. It only makes sense

if the request that initiated the transaction was a REGISTER request. This directive allows

the application to handle registrations, or the job can be delegated to the default processing

in the server.

4.5.7 Memory Management

The SIP server memory manager is custom designed for the server. Rather than allocating mem-

ory directly from the kernel with malloc and calloc, the code uses memory manager versions of

these functions, memmgr malloc, memmgr calloc, and so on.

The key idea of the memory manager is that most of the allocations performed in the

server are for handling a transaction. Transactions have a finite lifetime, at most a few minutes.

195

After this time, the transaction is done, and none of the memory it used is needed. Furthermore,

during the lifetime of a transaction, much of the memory allocated might be needed again be-

fore the transaction completes. This includes messages and packets, parsed structures, and so on.

The nature of the memory usage means that we can allocate a large block of memory for each

transaction. Allocations within a transaction use memory assigned to that transaction. Memory

allocations for a transaction are not freed individually. Rather, the entire block of memory allo-

cated for a transaction is freed when the transaction completes. This architecture provides many

benefits:

Fast management. Since memory is never freed during the transaction, the memory manager

does not need to worry about memory fragmentation. The manager keeps a pointer to the

next free byte, and when an allocation is made, the pointer advances by that amount. This

simple operation is fast.

Memory leak avoidance. Since memory for a transaction allocated from the memory manager

is freed when the transaction terminates (when the whole block of memory is freed), the

server code need not explicitly free any memory. This avoids memory leaks.

No copying. Since all memory allocated during a transaction is guaranteed to be valid for the

lifetime of the transaction, pointers can be safely copied and de-referenced without copying

the structures they point to.

Resource management. With a custom memory manager, it is easy to add resource management

capabilities that limit the amount of usage allowed.

The only disadvantage of the manager is that it is wasteful. Memory which does not

actually need to exist for the entire transaction will. This means that memory stays in use longer

than needed. The result is an increase in the required memory on the server.

4.5.8 Services

When a request arrives at the server, processing begins by executing a CPL+ script specified at the

command line of the server main. This script can go through a series of decisions and eventually

196

pass off control of the server to a series of modules. Modules have been defined for basic proxy,

redirect, and responding, in addition to CGI processing and phone routing.

The primary tool for creating services is the SIP CGI interface. The server will hand

off request processing to a separate process spawned by the server. This process can generate

responses or cause the request to be proxied, as specified in RFC 3050 [142]. We used the CGI

interface to create several combined services.

One of the services we implemented was CFNA-W, which is described above in Section

4.2. We wrote a program in C which receives the initial request, and tells the server to proxy

it. If the program receives a no answer response, it dynamically generates an HTML document,

personalized with the identity of the caller, which asks the caller to leave a message by either

clicking on one link to send email, or another like to go to their web page. The personalization

is accomplished by extracting the name of the caller from the From field, and placing it into the

HTML as a greeting. The HTML document is returned in a redirection response to the caller.

The client software we used was capable of receiving HTML content in redirect responses, and

passing it off to a web browser for display.

We also wrote services for find me, follow-me, call screening, and call redirect to email

on busy. We found our architecture made development of these services easy. The integration of

web and email, even though done simply, made the services far more attractive.

4.6 Conclusions and Future Work

We believe that SIP addresses the limitations in H.323 and BICC outlined above. Most important

among them is the limited support for new services, particularly combined services. The usage

of MIME and URIs are a key enabler of combined services, and these are capabilities lacking

in both BICC and H.323. Our experience has also shown us that new services are facilitated

by constructing signaling protocols with simple, well-defined, yet reusable operations. The sim-

ple offer/answer model in SDP, coupled with the flexibility to perform the exchange in either

the INVITE/200 OK or 200 OK/ACK has enabled third party call control, although we had not

considered third party call control when defining this capability in SIP.

Besides its advantages for constructing new services, SIP appears to be superior for build-

197

ing highly reliable and available Internet telephony networks. This benefit comes from the usage

of stateless intermediate devices, along with the use of domain name lookups as a means of in-

direction. Together, these features allow for a proxy to fail, and for the downstream or upstream

device to send the message to an alternate device. Since SIP can operate statelessly, the alternate

can successfully process the message. Furthermore, the soft-state nature of re-INVITE requests

(where the entire session state is included, rather than sending a delta) enables recovery of call and

session state in user agents. More investigation is required to determine the scenarios when such

recovery is actually feasible (other state in the device may make it impossible). Our soft-state

approach and stateless proxy approach are not present in either H.323 or BICC.

Our implementation experience proved that SIP is generally correct (indeed, our experi-

ences were used to help develop the specification in the first place). Of course, more extensive

testing since the publication of the specification has yielded errors and inconsistencies that are in

the process of being resolved. Our experience also demonstrated that the protocol was reasonably

simple, at least in comparison to H.323. In all fairness to H.323, however, SIP is getting more

complex as additional extensions are defined to fill in the gaps.

Much work remains in order to make SIP a complete protocol for Internet telephony

signaling. We have proposed extensions or approaches to cover reliable delivery of provisional

responses [122], integration of call signaling with network QoS [145], traversal of SIP through

Network Address Translators (NAT) [146], construction of multiparty conferences [147], guide-

lines for defining extensions [148], and refresh of calls through a session timer [149]. Others have

proposed extensions and techniques to cover a wide range of topics, many of which are needed

for a complete solution. This work is all being carried out within the IETF.

198

Chapter 5

Gateway and Service Discovery

5.1 Introduction

The first two chapters of this dissertation have focused primarily on issues related to media trans-

port; that is, how can voice and video be delivered from one host to another across the Internet

with good quality. We assumed that the two hosts that are communicating have agreed to do so,

and know each other’s IP addresses, UDP ports, and available codecs. Exchanging this informa-

tion between two hosts is the function of a signaling protocol, SIP, which we discuss in greater

detail in Chapter 4. The discussion assumed that the Request-URI indicates a domain (which

can be resolved through DNS if needed), so that the request can be forwarded to that domain.

Only that domain can interpret the user portion of the Request-URI to further route the request.

These assumptions, that the request can be forwarded to the domain of ownership, and only the

domain of ownership can process the user portion, are not true when the Request-URI contains

just a phone number (which can be represented with the tel URL [150]). This will be the case

when a user on an IP device wishes to call a user connected to a terminal on the PSTN (known as

PC-to-phone). It will also be the case when the long distance portion of a traditional phone call

is to be carried over the Internet (known as phone-to-phone).

In the PC-to-phone scenario, the originating PC has only a telephone number, entered by a

user. In the case of phone-to-phone via the Internet, the ingress gateway also has only a telephone

199

number, which was the number dialed by the originating terminal on the telephone network1. In

order to complete the call to the PSTN, the services of an Internet Telephony Gateway (ITG)

are required. These gateways are capable of converting signaling and media session protocols

between the Internet and the telephone network. Therefore, in order to complete the call, the

telephone number must be converted into either an IP address of the gateway, the domain name

of a gateway, or a SIP URL that routes to a SIP server capable of reaching a gateway. This

problem, which we define as the gateway discovery problem is discussed in detail in this chapter.

The rest of this chapter is structured as follows. Section 5.2 defines the problem in more

detail, outlines requirements for a solution, and then demonstrates how the problem is a subset

of a more general problem of wide area service discovery, whose more general requirements are

then outlined. Section 5.3 discusses related work in the general problem of service discovery. In

Section 5.4, we review existing protocol solutions that have been used for service discovery, and

show why they are inadequate. Then, in Section 5.5, we present our solution, called the Wide

Area Service Discovery Protocol, or WASRV, which builds upon the Service Location Protocol

[151, 152], and show how it meets the requirements outlined in Section 5.2.

5.2 Problem Definition

We first consider the specific problem at hand, and then view the problem from a more general

perspective.

5.2.1 Gateways

Discovering services on the Internet is not a new problem. IP end-systems must be able to dis-

cover a DNS server, for example. This is typically done through either a static configuration,

or via protocols like the Dynamic Host Configuration Protocol (DHCP) [153]. Unfortunately,

ITG’s provide a much different service than a DNS server. The nature of this service makes their

discovery a much harder problem [154].

First and foremost, it is sufficient for an IP host to use the DNS server which is closest
1Actually, it may not be the actual number dialed, as a result of local number portability or 800 number translation

services. However, that is not important for the purposes of this discussion.

200

to it, in terms of IP hops. The DNS server is usually administered by the IP transport provider,

and clients use the server their administrator tells them (usually through DHCP) to use. There are

no per-access charges associated with DNS lookups. Any cost for providing DNS service (like

computer depreciation) is wrapped into monthly access charges, if any. There is generally no

reason for a host to use a DNS server besides the one provided by its ISP.

This situation is almost the exact opposite for an ITG. Unlike DNS services, there is a

cost associated with completing the call, since the ITG must dial the final endpoint on the PSTN.

This will cause charges to be accrued by the ITG administrator, which must then be passed back

to the user. These costs depend on the distance from the ITG to the final PSTN destination, the

calling plan used by the ITG, the time of day, the volume of business, etc. To reduce these costs,

a client may prefer to use an ITG which is situated as close to the final PSTN callee as possible.

This would result in the cheapest call between the ITG and the destination, and therefore would

minimize the cost passed on to the client. We are assuming that any costs associated with the

Internet portion of the connection are independent of the destination.

Cost may not always be the primary concern, however. Instead, a caller may wish to have

the best quality for the call, independent of cost. This might be typical for business calls. Due

to varying delays and losses on an IP network, the best quality is probably obtained by using an

ITG which is closest to the caller, as measured in terms of delay or IP hop count. We call such a

selection criteria proximity-based.

Cost is not the only reason why a user may prefer to use one ITG over another. In an

international calling environment, the set of protocols and billing mechanisms supported by ITG’s

can be expected to vary. Some ITG’s may support billing of IP hosts via credit cards or e-cash

[155] on a per-usage basis. Others may require the users to set up an account ahead of time. The

ITG’s will have to perform speech transcoding to convert the codec used by the IP host to either

G.711 [156] (the standard used in the PSTN), or analog. There are many speech coders used by

IP clients. These include the 8 kb/s G.729 standard [157], the 5.3/6.3 kb/s G.723 coder [25], the

16 kb/s G.728 LD-CELP coder [158], and any number of proprietary codecs. There are also a

whole host of higher rate, high quality speech coders, such as G.722 [159]. Since not all ITGs

will support all codecs, and since IP hosts may not all implement the same baseline codec, an IP

201

host may need to select an ITG based on its speech coder support.

In addition to the speech codec, IP hosts may utilize a range of different signaling proto-

cols for initiating and terminating calls. ITG’s must be able to recognize these protocols. H.323

[94] developed by the ITU, and SIP [89] are both used for call signaling. Proprietary signaling

protocols exist as well. An IP host may need to select an ITG based on which signaling protocols

it can understand.

These signaling protocols often provide optional features, such as multi-party conferenc-

ing or call transfer. If a user knows that they may wish to invoke such a service during the call,

they may wish to select a gateway which supports those call features.

Authentication and encryption are also commonly used in Internet telephony. If an IP

host wishes to encrypt the portion of the call between itself and the ITG, the ITG must support

the particular encryption algorithm. This, too, becomes another criteria for gateway selection.

Of course, the need to select gateways based on protocol support (billing, speech codec,

signaling, and encryption) can be eliminated by universal agreement on baseline protocols for

each of these. The likelihood of permanent agreement in this area in an international context is

questionable, however. We believe that there will continue to be a need for ITG selection based

on protocol and codec compatibility.

Implicit in much of the above discussion is the fact that an ITG need not be run by the

same ISP that is used by a client. In fact, it is highly unlikely that a gateway will be run by the

same ISP used by the client. ISP’s are frequently local, and its customers will probably want to

use ITG’s to make calls to locations that are not in the ISP’s area of coverage. In fact, there is no

reason why the administrator of an ITG need be an ISP at all. In an open business environment, it

is important for IP hosts to be able to use ITG’s from whatever service provider they desire. This

in and of itself can then become another criteria for selection. An IP host may prefer to use an

ITG administered by some large telecommunications provider, for example.

We are now in a position to state the gateway discovery problem. ITG’s are run by pos-

sibly independent, widely distributed service providers. These ITG’s may be scattered across the

world, and may implement a variety of different protocols for billing, speech coding, signaling,

and network transport. Usage of a gateway by a caller on an IP host to complete a call to a PSTN

202

endpoint incurs a cost, which will be passed on to the caller. The caller must be able to determine

the IP address of a gateway which meets the requirements of the user. These requirements include

(but are not limited to) cost, proximity, protocol and feature support.

Its helpful when formulating requirements (and for comparing alternatives) to have a

sense of how large a problem this is. There are two dimensions to the scale. One is the number

of gateways, and the other is the number of clients trying to access those gateways. Estimating

the eventual size of the latter is difficult. In order to minimize costs for its customers, an ITG

provider may decide to deploy ITG’s such that nearly every PSTN number is reachable by a local

call though some ITG. Current ISP’s are faced with a similar problem, but in reverse; they must

have points of presence (POPs) so that each PSTN number can call a POP as a local call. As of

April 2001, America Online had approximately 2562 POPs in the U.S. (with 316 in California

alone). To extrapolate to the number of POPs required worldwide, we multiply this figure by

the ratio of worldwide to U.S. telephone access lines. As of June 2000, there were 191 million

telephone lines in the United States [160]. We could not obtain current data on the number of

worldwide telephone subscribers. In 1996 there were 745 million [154], and forecasts predict

approximately 1.1 billion by 2002. As a result, we estimate there are approximately 1 billion

lines today. This would result in 13,414 POPs worldwide. The number of gateways will be the

number of providers per POP, times this number. As of June 2000, there were approximately 3.8

local phone providers in each zip code in the United States [160]. If we use this same factor, we

obtain approximately 51,000 gateways. This number is very rough, and we estimate it is below

the actual number of gateway clusters which might be deployed (that’s because the number of

AOL POPs is far below the number of U.S. local calling areas).

Estimating the number of clients accessing those gateways is easier than estimating the

number of gateways. Assume that within the U.S., eventually all inter-LATA and international

calls are over IP telephony. In 1999, 84.2 billion inter-LATA calls and 4.8 billion US to interna-

tional calls were made, for a total of 89 billion [160]. This is 2822 calls per second. We multiply

this by the ratio of worldwide to U.S. lines, and obtain roughly 15,000 calls per second. If each

call requires a gateway to be discovered, the system needs to handle this many discovery requests.

If we assume a system where the total bandwidth usage for a gateway discovery protocol is linear

203

with the number of clients (but independent of the number of gateways), with a usage of 1 kB per

user per call, the bandwidth needed for the system is roughly 150 Mb/s. We chose 1 kB based

on the assumption that client messages would be similar to typical database queries, which are

usually not too large. As a point of comparison, the bandwidth required to carry the voice calls

for this system (assuming 3 minute call hold times) is much larger, roughly 432 Gb/s.

This basic analysis reveals that the problem is bandwidth (both network and processing)

limited, not data limited. Storing fifty thousand entries for gateways is trivial, and can be done

in memory for almost no cost. Designing a system that can process fifteen thousand requests per

second is more challenging.

Given the problem definition and the sizing analysis, we can define several requirements

for a solution to this problem:

Fast resolution: The protocol should be fast. Since finding the ITG is required before a call

can be placed, the call setup times are increased by the amount of time required for this

protocol to operate. Therefore, rapid operation is important. The discovery process should

not take more than a few hundred milliseconds.

No central point of failure: Since the discovery process is a precursor to call establishment,

any system failure is unacceptable. An outage is acceptable if it can be recovered within a

second or two (so that call setup times still remain acceptable).

Avoid middlemen: There are two principals in the system, the provider of the gateways, and the

client. If a middleman is introduced, to act as a broker which provides a global, cross-

company service, we have a third principal. The middleman must now be trusted by both

the provider and the client. If the system has a single middleman for all providers, the

middleman becomes a central point of security compromise. This problem is especially

troublesome for gateway discovery, since immediate revenue is derived from usage of the

gateway returned by the system.

Efficient: The protocol should not require significant bandwidth. It is not acceptable, for ex-

ample, for an IP host to query a long list of candidate gateways. This would multiply the

1kB per user per call usage by some multiplicative factor, and significantly impact network

204

bandwidth usage. Querying gateways also imposes resource constraints on the gateways

themselves.

Linearly scalable: The bandwidth generated by the system should scale linearly, or better, with

the number of clients. Scaling linearly with the number of clients is more important than

scaling linearly with the number of gateways, due to the smaller number of gateways. The

processing load on the system should also scale in the same way.

Dynamic: The protocol should be dynamic. As new ITG’s come into existence, they should

become accessible to IP hosts almost immediately, without requiring a human to enter them

into a database. Similarly, if an ITG goes down, this information should be propagated in

a timely fashion. Changes in billing policies (due to some upcoming holiday or special

promotion) should also be distributed rapidly. Here, rapidly refers to timescales much

smaller than the duration over which the data is valid. For example, if ITG characteristics

change on a daily basis, rapid dissemination implies timescales on the order of minutes.

Secure: Security is important. The protocol must ensure that the information provided about a

gateway is authentic. Privacy of the gateway information does not appear to be important in

this application. The purpose of the protocol is widespread dissemination of data. However,

the phone number dialed by the client may be sensitive. Privacy of client generated data is

therefore important. The protocol should also protect against denial of service attacks.

5.2.2 General Services

The problem that has been discussed so far is the discovery of a particular server, an ITG, based

on some criteria. Telephony gateways are not the only types of servers which might need to

be discovered. In general, the problem of wide area service discovery is to allow clients to find

servers for a particular service in possibly remote locations on the Internet based on characteristics

of the service. Discovering of services by characteristic is substantially different (and harder) than

discovering services by name or address. We can extrapolate most of the requirements discussed

above to more general ones for this problem:

205

Multi-criteria: The client desires a service which can be characterized by a number of attributes.

The client should be able to express the desired attributes of the service, and get back a

server whose service meets the criteria. There should be no arbitrary restriction on the

type, values, or number of attributes which can potentially characterize a service. Some

restrictions on typing and some convention with respect to the interpretation of values will

exist in any wide area service discovery protocol.

Location-independent: The location (in terms of domain or geographic locale) of the desired

server is irrelevant and may not be known a priori. That is, the domain name, administrative

domain and network address of the desired service is not generally known in advance and

in many cases is not pertinent. In some cases, the location of a server may be important,

but no more important than any other attribute of the service.

Auto-configured: It should be straightforward to configure new clients to discover a service,

and it should be straightforward for servers to make themselves available for discovery. By

straightforward, we mean that the configuration should require, at most, the setting of one

or two parameters.

Rapid Availability: When a server is first brought on line, it should become visible and accessi-

ble to clients rapidly.

Service-based: The attributes provided by the client provide the attributes of the service, not

the content provided by that service. For example, an attribute for a web server might be

support of the Internet Cache Protocol (ICP) [161, 162], as this is a characteristic of the web

service. “Contains web page X” is not an attribute of a web server, but rather a description

of the content provided by a web server. This requirement is necessary in order to achieve

reasonable scale.

Automated: The service discovery process should be automated, and not rely on interaction with

a human to satisfy a reasonable query. However, the protocol should not prevent interactive

sessions.

Policy Support: The agent responsible for satisfying the client’s service request should be able

206

to inject its own policy into the process. This policy may disallow various servers from

being used by the particular client, for example.

Global: The location of a matching server can be anywhere, as can be the client. The protocol

should be internationalized, supporting queries and attributes in different languages.

Scalable: There can be millions of clients, and thousands of servers for a particular service.

Mildly Dynamic: The attributes which characterize the service provided by some server do not

change on timescales that are on the same order of magnitude, or smaller, of network round

trip times. However, they may change on timescales much larger than this, and this should

be handled appropriately.

Secure: Since servers may be sources of revenue, protection against denial of service attacks are

key. The solution must not make it possible for a single entity to deny service to a large

group of servers. Similarly, the protocol must provide a means of authenticating servers

and verifying the integrity of the service attributes provided.

Lightweight: Servers need not be lightweight, but it should be possible to provide lightweight

clients. This is especially important for gateway discovery, which may be used by stan-

dalone IP telephones with limited memory capacity.

Rapid Queries: Queries to discover servers should be handled rapidly, preferably on the order of

tens of milliseconds. This is because service discovery is a precursor to service access. The

longer the service discovery takes, the longer the total time it takes to access the service.

Many services are time critical for access; an excellent example is IP telephony. Since

discovery of gateways is a precursor to call setup, the call setup delay is directly affected

by the service discovery time.

This definition eliminates quite a number of problems which might otherwise be deemed

wide area service discovery. For example:

Yellow Pages: The “yellow pages (YP)” service is an abstract type of service which allows you

to find pizza parlors in San Antonio which deliver, or cleaners in Boise that are open on

207

Saturday. While this resembles the wide area service discovery problem, its focus differs

in many respects. The most important distinction is that location (here, geographic) is a

key part of the selection process. This allows for the use of a global, distributed database

in each geographic locale. YP is therefore focused on locating regional services. Locating

wide area services, on the other hand, is based on multiple attributes, and is global in scope.

Furthermore, there is no single attribute on which to hierarchically organize the database.

White Pages: The white pages service allows you to find some person or service with a specific

name, associated with some organization. Like the yellow pages service, it is based on strict

hierarchies for the names. It lacks the multicriteria selection required of yellow pages,

however. Its main difference from wide area service discovery is the assumption of a

hierarchy of names. Service attributes are much flatter, by comparison, and change more

frequently than names in a white pages database.

Web Pages: The web page location problem is to find a web page (which is on some web server,

of course) which contains the word “foo”. A slightly more advanced version of this would

be to find the web page that talks about some subject. This location problem is different

from the wide area service discovery problem in that the user is looking for a document,

not a service. The documents are usually sorted and indexed based on either content or

meta-information. Since searching is not precise, it cannot be automated, and progresses

based on interactive input and trial from a human user. Furthermore, web indexing is based

on “pull” of information by web spiders. Since spiders have no way of knowing when

information on a page has changed, the information returned by a search engine is often

stale and out of date.

Beyond IP telephony gateway discovery, there are numerous applications of wide area

service discovery:

Media servers: Media servers provide streaming media content, such as audio or video. They

have applications in video on demand, music sampling (listening to the first 30 seconds of

a new song at a music store), and voicemail. Typically, media servers are controlled with

protocols such as the Real Time Streaming Protocol [163], and the media they delivered

208

is carried over RTP. Other protocols might be used. For these kinds of servers, it may be

important to discover one based on the types of movies it has, the protocols and codecs it

supports, or the billing mechanisms it understands.

Conference bridges: Conference bridges are similar to media servers. They support RTP and

can send multimedia streams to numerous users. However, their main function is to mix

the media (audio or video) provided by participants in some conference, and then transmit

that media back to each participant. When a group of users wishes to participate in a

conference, they may need to discover a server that has particular media and codec support,

has particular audio mixing features (such as silence detection), has particular video mixing

features (video follows audio), is close to the participants, and has specific billing support.

Anonymizing server: In order to make an anonymous phone call, a user can make use of anonymiz-

ing server. The server re-originates the SIP and RTP traffic from the user, and terminates

the SIP and RTP traffic from the callee. It modifies any fields in the SIP and RTCP packets

which may reveal information about the user. The discovery of an anonymizer might be

based on its codec capabilities, signaling protocols, and call features (such as transfer) that

can be supported anonymously.

5.3 Related Work

As we have indicated, discovery of servers on the Internet is not a new problem. Much of this

work, however, is in related, but orthogonal areas. We mention this work in order to differentiate

the problems in other spaces from the problems we are trying to solve here.

One related problem is that of server selection. In the server selection problem, a client (or

their proxy), wishes to select amongst a set of servers. The selection process is driven primarily

by quality; that is, the user desires a server with the fastest response time, least load, or largest

throughput, as the application needs would dictate. Dykes et al. provide an excellent survey of the

work in this field, providing a taxonomy of the various solutions [164]. Carter and Crovella [165,

166] have analyzed client-side selection algorithms using probes, hop counts, and geographic

estimates. Stemm, et al. propose SPAND [167], a distributed system for collection, storage, and

209

retrieval of network performance information. Sayal, et al. [168] have examined selection of

web servers using a system called Web++ that applies the Refresh algorithm of Sayal [169]. This

algorithm selects the server with the minimum HTTP request processing time, but refreshes the

request processing time estimates periodically.

The server selection problem is different than our service discovery problem, in that it as-

sumes the addresses of the candidate servers are known a priori. In our problem, the addresses are

not yet known. The problems are orthogonal as a result; once the service discovery mechanisms

have identified the set of appropriate servers, a server selection algorithm can be used to find one.

Xu et al [170], however, have attempted to integrate the process of selection and discovery for the

specific case of telephony gateways. Their procedure effectively requires a ping of every server

advertised by every provider, which clearly does not scale.

Another problem space is the discovery of servers for a specific service type within a spe-

cific domain. This problem is usually addressed using DNS mechanisms, specifically, the Service

(SRV) DNS resource record [171]. An example is the search procedure defined to discovery SIP

servers within a specified domain [126]. This problem differs since the domain of the targeted

server is known a priori.

Another related area of work is searching for resources and content in the web. This is

an extensively studied area, with countless references [172, 173, 174, 175]. This problem space

differs from ours in that it focuses on defining metrics for successful searches and on mechanisms

for indexing of web content

5.4 Existing Solutions

With an understanding of the problem at hand, which is discovery of services within an open

accessibility model, the next step is to review architectures that have been proposed for this

problem. We have observed that the solutions can be categorized by their general architectural

approach. We propose a segmentation of the proposed solutions into five categories. These are

centralized databases, regionally replicated databases, distributed databases, indexed databases,

and multicast push and pull.

Others, such as Schwartz et al. [176], have proposed different taxonomies for service dis-

210

covery protocols. Ours focuses more on architecture and data location, rather than other aspects

of the system, such as data types, as used by Schwartz et al. [176].

In this section, we review existing protocols in each of these four categories, and de-

termine their suitability for solving both the wide area service discovery problem and the more

focused gateway discovery problem.

5.4.1 Centralized Databases

In the centralized database approach, there is a single database, which indexes the complete set

of servers for a particular service. When a user wishes to locate a service, they connect to one of

these servers (which requires a form of server discovery in its own right), and formulate a service

query. Generally, these systems allow for dynamic update of the content of the databases in a dis-

tributed fashion. Entities providing some service can update the database with information about

their service. The systems are generally segmented by service type; that is, separate protocols,

servers or database instances exist for different service types.

This model is the premise behind several concrete system implementations for service

discovery. An example of such a system is the Service Location Protocol (SLP) [152], which has

been engineered for enterprise-wide service discovery, along with its predecessor, the Resource

Discovery Protocol (RDP) [177]. Java’s Jini [178], is another example. JINI is remarkably simi-

lar to SLP, providing protocols for discovery of lookup services, registration with lookup services

(referred to as a join in the Jini model), keepalives, and queries, in addition to security, trans-

actions, and even notifications. Bluetooth [179], a standard for wireless ad-hoc networks, has a

component called the Service Discovery Protocol (SDP), which allows clients to query a server

for a set of services matching some criteria. Unlike SLP, however, SDP does not provide means

for the clients to discover the servers. Another system is Salutation [180], which is similar to

Jini and SLP. It works with any programming language (unlike Jini) and any network transport

layer (unlike SLP). Like the others, it defines a server that holds services, called the Salutation

Manager (SLM). Clients can query the SLM, or search for services. The specifications mention

communications between SLMs, but little information is given on how data is distributed, and

when. Salutation also defines the actual protocols for communicating with services, unlike most

211

of the other architectures. This requires definition of components for every service supported by

the system. A good summary of several of these systems can be found in work of Golden [181]

and Bettstetter [182].

5.4.1.1 Service Location Protocol

We provide additional information on SLP, since it is a good prototypical centralized database

solution, and since our own contribution, which we discuss in Section 5.5 is based on SLP.

SLP can be used to discover services in one of two ways. First, a client (known as a

User Agent (UA)) can send a request for a service to a well-known multicast address. Servers

(known as Service Agents (SA)) listen for queries on this address. The request contains an ex-

pression describing the service required. Any servers matching the query respond to the client. In

recognition of the fact that this can cause significant bandwidth consumption, a second method

for service location is available. First, the client discovers its Directory Agent (DA). Instead of

multicasting its queries to a multicast group, the client unicasts its queries to the DA. All servers

register their services, using unicast, with the DA. If there are multiple DAs, the SA registers

with each. This allows each DA to build up an identical service database. These registrations are

periodically retransmitted to protect against network loss. The DA checks its database against the

query, and returns a list of servers to the client.

As an alternative to having each SA register its services with each DA, peering relation-

ships can be established between DAs [183]. This results in a fully meshed connection between

the DAs. An SA need only register with a single DA, and its registration is propagated through

the mesh to the other DAs.

The use of a DA requires both SAs and UAs to discover the address of the DA handling

queries for a particular service. This is accomplished in several different ways. First, DA’s

multicast advertisements periodically to a well-known address. SAs and UAs can subscribe to

this group and learn the address of the DA. An alternate approach is based on the recognition that

a DA is itself a server, and the multicast discovery procedures of SLP can be used to discover

the DA. Of course, the address of the DA can always be configured statically or through auto-

configuration protocols such as DHCP [153].

212

SLP introduces the concept of scope. Each service is associated with some scope, which

is just an arbitrary text string. Clients can request services that lie within a particular scope, and

DA’s can be configured to only accept registrations from servers that have a particular scope. A

typical scope might be the string “math-department”, so that clients in the math department of a

university will only have access to services run by the department.

When a client wishes to discover a service, it formulates a Service Request (SrvRqst)

containing the desired service type (be it “printer”, “media server” or “telephony-gateway”), and

an LDAPv3 predicate describing the desired attributes. The response (SrvRply) contains a set of

service URLs. These URLs identify the services which matched the query. For example, a query

for printers supporting A4 paper might return the service URL:

service:printer:lpr://foo.com:515/draft

Clients can also query for the set of service types within a scope, using the Service Type

Request (SrvTypeRqst). This is useful for “browsing” the services on the network. Finally,

clients can query for the attributes for a particular service, identified by its service URL.

In SLP, service types can either be concrete, or abstract. A concrete type, such as printer or

media server, has well defined and fully enumerated attributes. An abstract type, like an abstract

class in object oriented programming, has an incomplete template or set of attributes. A concrete

type that extends this abstract type would define the complete template or set of attributes. An

example of an abstract service type might be “sip server”, with concrete types “proxy server” and

“redirect server”.

5.4.1.2 Discussion

Most of the centralized systems have been used for local area or enterprise-wide service discovery.

The most straightforward way to apply them for wide area service discovery is to have a very large

server, run by a third-party provider, which can be queried for services. Service providers send

updates to the third-party provider.

Scale is the primary issue for these architectures. However, centralized databases can

scale up enough to handle gateway discovery. Even with today’s technology, a single server

213

could, in principle, handle the bandwidth (150 Mb/s), the query load (2822 queries per second),

and the storage (51,000). Of all these figures, the query load is the most problematic, but it is

within the realm of performance figures for high end systems.

An important drawback is that it introduces a single middleman into the system. As we

discussed in Section 5.2, these introduce a central point of compromise and a central point of

failure.

5.4.2 Replicated Databases

In this architecture, there is still a single, third-party service provider acting as a middleman.

However, instead of using a single, centralized database, a set of replicated databases are used.

These databases may be distributed around the network, so that clients can query a local one.

This model is used by modern web searching services, such as Google [174], Harvest

[184, 185], and Alta Vista. The underlying architecture is one of a farm of servers that handle

queries. These databases are massive in their size and data storage capacities; Brin [174] re-

ported that in 1997 they had indexed 24 million web pages, requiring 53 GB of storage for the

compressed repository alone. As of May 2001, Google had indexed 1.34 billion web pages.

Perkins [186] has proposed to apply both the underlying architecture and the actual search

engine service to the service location problem. Gateways (or any server), are described in web

pages using some kind of service metadata. Crawlers pick up and index this information. When

a user wishes to access the service, they perform a search, and the results are used to select a

gateway.

We do not believe this solution is truly viable for automated service location. It is based

only on pull, so that service information may be stale for extended periods of time. Web search

engines are also not amenable to automated usage, which is critical for service discovery.

It is viable, however, to apply the architecture underlying web search engines for service

discovery. Using a set of replicated servers has many advantages. It scales up well. This is

particularly true for gateway discovery. Since the query rate is the primary bottleneck, replication

can improve the amount of queries any particular server needs to handle. With 200 servers,

each one would need to handle only 10 queries per second, on average (assuming uniform load

214

distribution).

As with pure centralized databases, there is a middleman problem. Interestingly, Brin

documents cases where search engines have been compromised for profit [174]. One search

engine, OpenText, was selling the right to be the first match for a particular keyword search.

Brin warns that more insidious compromises are possible. We believe that Internet telephony

gateway discovery will be an even more attractive target for compromise, since their is a direct

link between revenue and being returned in a query.

5.4.3 Distributed Databases

The solutions in this section implement distributed databases. The information about services

are scattered across databases owned by different providers. Each provider indexes the servers it

is responsible for. However, distributed databases require that the data be distributed according

to some kind of namespace partitioning. This partitioning is effective only when a client query

can be satisfied by servers from a small number of providers. This means that the set of servers

run by a provider (which are also the ones it indexes) need to be within a contiguous portion of

the namespace, with minimal overlap with portions indexed by other providers. For the general

service discovery case, we would argue that it is not possible to partition the namespace in such

a convenient fashion.

However, such a partitioning is more realistic for Internet telephony gateways. Generally,

the queries for gateways are going to be for one that is capable of terminating calls to some PSTN

number for the minimum cost. Since the terminating number is effectively the primary key for

all queries, we can distribute the namespace in a hierarchical fashion with that key.

Such distributed databases for IP telephony gateway discovery have already been pro-

posed. Both DNS and X.500/LDAP-based distributed databases have been proposed in the liter-

ature. In the sections below, we scrutinize those solutions and show why they are not adequate.

5.4.3.1 DNS

The Domain Name System [119] is used to map host names to IP addresses. It has also been

used for mapping a service in a domain to a set of servers which can provide that service [171].

215

Most relevant to the gateway discovery problem is the tpc.int subdomain [187, 188]. The tpc.int

subdomain allows a host to register a fax machine as providing fax service to a certain set of

telephone numbers. An IP host wishing to send a fax constructs a domain name based on the

fax number, and can then find the IP address of an email-to-fax gateway. The construction of

the domain name from telephone number is done by assigning each digit to a subdomain, in

reverse order. For example, a fax gateway in the 415 area code in the U.S. (country code 1)

would construct its domain name as 5.1.4.1.tpc.int. If there are multiple gateways servicing any

particular telephone area, the DNS server will contain multiple records, one for each gateway.

More recently, DNS has been proposed as a way to resolve telephone numbers to re-

sources (represented as URLs) on the Internet, using the e164.arpa root domain [189]. This begs

the question – can these gateways be resources, represented as SIP URLs? A gateway provider

would place entries into the DNS for each gateway. These entries would be the minimal set of

prefixes, the union of which represents the set of numbers the gateway can to terminate calls

to. For example, a gateway willing to terminate calls to the 415 area code in the U.S., in ad-

dition to a particular exchange (453) in the 408 area code, would place two entries into DNS -

3.5.4.8.0.4.1.e164.arpa and 5.1.4.1.e164.arpa. To discover a gateway, a client queries DNS with

the number, and will get back the longest prefix matching entry.

There are numerous difficulties with the DNS solution. The most troubling one is related

to administering the DNS records. Note that a gateway must create entries for all those country

codes, area codes and exchanges it is willing to terminate calls to. Since gateways make money

(presumably) by terminating calls, it is in the interest of a gateway to indicate willingness to

terminate calls to anywhere in the world (of course, there may be high costs associated with

certain numbers). This means that if there were no constraints, a gateway vendor would probably

create entries for every exchange, area code and country code in the hopes of obtaining more

business. The result is that any query to DNS would return every gateway, and that doesn’t scale

linearly in bandwidth usage, as we have discussed in Section 5.2.

To solve this problem, some restrictions would need to be placed on the records a gateway

can insert into the DNS. These restrictions will fundamentally limit the business a gateway can

obtain. Who is to decide which ITG’s are to be located in the different sections of the database?

216

Any solution is fundamentally limiting. In fact, the original proposal for the tpc.int subdomain

focuses on the cooperative, non-competitive nature of the system, recognizing that it is inappro-

priate for competitive business practice [188].

DNS also has security problems, primarily due to the fact that the administrator of a gate-

way need not be the owner of the DNS server that contains the zone with that gateway entry.

Unless each server is run and administered by a truly neutral third party, the possibility of tam-

pering and unfair business practice will exist, and is not solvable with cryptographic mechanisms.

DNS procedures have been described that can allow selection of a server in close proxim-

ity to the querier [190]. These approaches, used frequently in content distribution networks, can

allow for selection of a gateway based on proximity to the caller.

5.4.3.2 LDAP and X.500

LDAP [191] is the Lightweight Directory Access Protocol. It was originally designed to query

X.500 databases, but is now independent of X.500. X.500 is a large, distributed database which

can be used to store information about nearly anything. LDAPv3 [192] is a new version of LDAP

which adds support for improved security, extensibility, and server referrals. LDAP has been

explicitly proposed as a solution to the gateway discovery problem [193].

The architecture of a distributed X.500 database is much like DNS. Its main difference

is that DNS only supports lookup of records, whilst LDAP supports searches. LDAP can also

be used for lookup; in this case its operation, strengths and weaknesses for solving the gateway

discovery problem are identical to DNS. The remainder of this discussion assumes we are trying

to use LDAPs search capabilities to find a single gateway based on the desired criteria.

Like DNS, portions of the database are distributed to different servers. It makes sense to

organize the database using the same hierarchy for assigning names in e164.arpa. Each digit in

the number would form an additional level in the distinguished name, just like the DNS solution.

The entry for a particular DN would be run by a trusted party. Service providers would request

that their gateways be entered into the database for a particular DN, if the gateway services

numbers within that prefix. They would also provide the trusted third party with attributes which

characterize the gateway. This is no different than the DNS solution, which also requires a trusted

217

third party to manage the zone for a particular prefix.

The LDAP solution is far more flexible in terms of how the query is formulated. The client

can ask for a gateway, starting at the root of all gateways, with particular attributes. Since LDAP

does not support complex formulae computations in queries, asking for the “cheapest” gateway is

not always feasible (price may be a function of the time-of-day, for example). However, querying

for gateways with specific codec, security, and capacity attributes is feasible. The response of the

query would yield potential gateways that match on attributes. The client can then go through

this list to determine ones that are cheapest or closest to the dialed number. As an alternative, the

search can be made starting at a node deeper in the tree; for example, if a call is to be made to

+1 212 555-1212, the client can query starting from 2.1.2.1.e164.arpa, guaranteeing the match is

a gateway that serves the 212 area code in the U.S. The client does not need to make the query

based on knowledge of the numbering plan; it can simply choose increasing numbers of digits as

part of the RDN to further narrow the set of gateways returned by the query.

As a result, the query is much more flexible than DNS. It can be based on a variety of

query parameters, which is not possible with DNS.

Unfortunately, this approach still suffers from many of the same drawbacks as DNS.

The issue of ownership and administration of the database, and restricting how many entries a

gateway can have, still exists, and we believe these are fundamental barriers. This problem, in

fact, is present in all distributed database solutions.

From a practical perspective, LDAP requires a great deal of regularity in syntax and

semantics in order to function properly. All cooperating databases and clients must use exactly

the same schema. This will make it difficult for gateways to add attributes that describe unique

capabilities they possess.

5.4.4 Indexed Databases

In an indexed database, the data is distributed across multiple servers. However, unlike distributed

databases, where the partitioning of data across servers is based on data hierarchy, the partitioning

of data across indexing servers can be arbitrary. Each server can hold a portion of the data, and

it somehow advertises indices to other databases that provide a summary of the contents of the

218

database. This summary information can be used to overlay a routing network of sorts among

the databases. A query can be made to any one of the databases, and this query can be routed

to one or more other databases which may have the actual service that is desired. Fundamental

to the operation of these systems is an efficient way to compute this summary information, es-

pecially doing so in a way which reduces the size of the summary compared to the actual data.

Of course, this implies loss of information, which means that a possibility is introduced of either

false positive or false negative matches of a query against a summary index.

Examples of such systems are whois++ [194, 195], the Secure Discovery Service (SDS)

[196], the Intentional Naming System (INS) [197], and for IP telephony specifically, Telephony

Routing over IP (TRIP) [198, 199].

Whois++ is the oldest amongst these systems. The summaries passed between database

servers are called centroids. The centroid lists, for each template record and attribute in that

template, the union of all values for that attribute. Attribute-value pairs are often identical across

many records (for example, employees in a company database of FOOBAR INC. will have their

DEPARTMENT attribute equal to SALES, MARKETING, or ENGINEERING. The centroid of

all these records will then contain just those three attributes.). This means that the centroid can

occupy much less space than the sum of the sizes all the records. When a server receives a query

it cannot satisfy, it checks the centroids it has to see if other servers might be able to satisfy the

query. In this case, the client is referred to those servers. The indexing mechanism in whois++

was tied to whois++, even though it had more general applicability to distributed databases. As

a result, the Common Indexing Protocol (CIP) [200, 201] was developed as a general purpose

indexing protocol. CIP uses MIME for the transfer of indexes, and allows a variety of different

index types beyond centroids to be specified.

INS is much like whois++ in its design. Databases (referred to as Intentional Name

Resolvers, or INRs), are organized into an arbitrary topology. Each INR publishes a summary of

its contents in the form of a Name Tree, which is similar in structure to the centroids of whois++.

Unlike whois++, INS allows for queries to be forwarded to a single potential server with the data,

all potential servers with the data, or for the INR to return the list of potential servers directly to

the querier.

219

SDS uses a more creative mechanism for its summary data. Instead of propagating the

data itself, it propagates sets of hashes of queries which may be successful against the database.

These hashes are represented as an array. Assume some query Q has a hash of H(Q), and the

array is denoted with I . If Q yields a match in the database, I(H(Q)) is set to one, else zero.

These large arrays can be represented in compact forms, and used as indices. Like centroids, the

summary data elements never have false negatives, but may have false positive results.

5.4.4.1 Telephony Routing over IP (TRIP)

TRIP can be considered as an application of indexed databases to the specific case of databases of

Internet telephony gateways. Each indexing database server is known as a Location Server (LS).

LS’s are run by different service providers. These service providers run their own gateways, and

the information about those gateways is placed into the LS. The LS communicates with peer

providers, exchanging “indices”. In this case, the indices are always based on a primary key,

which is the phone number prefix. Other attribute information is present as well. The protocol

specifies aggregation rules that define if and how two indices (which are referred to as routes) can

be combined. TRIP is actually based on BGP [202], since its problem space is the inter-domain

exchange of routing information. This information just happens to be for phone number prefixes,

not IP address prefixes. However, much of BGP can still be used. An important benefit of TRIP is

that the aggregation rules guarantee that there are never false positives if the query is only based

on the destination phone number.

The architecture of TRIP is shown in Figure 5.1, which is identical to Figure 4 in RFC

2871 [199].

The network is composed of a set of Internet Telephony Administrative Domains (ITADs).

These ITADs own or wholesale gateways to other ITADs. Each ITAD has one or more LSs which

are used to exchange information on the telephone prefixes they are willing to terminate traffic

to, along with attributes that describe those routes. ITADs may also have End Users (EU), which

are people or machines that establish calls that are routed using the data collected through these

inter-domain exchanges.

The TRIP framework allows clients to query the system for a route to a particular gateway

220

LS LS

LS

GW

GW

GW

GW

EU

EU

EU

EU

TRIP

TRIP

Figure 5.1: Architecture for TRIP

[199]. As a more attractive alternative, the client can send its INVITE request to a proxy which

is co-resident with an LS. The proxy looks up the destination number in its database, and finds a

matching index (route). Since there cannot be false positives, the proxy routes the call to the peer

proxy/LS, which performs an identical operation. The result is that the call is effectively setup in

parallel with the query process.

An implication of performing the call routing in parallel with the query process is that the

end user need not have a relationship with the provider of the gateway. Instead, there is a chain of

bilateral trust relationships, starting with the caller and its proxy, continuing between pairs of LS’s

along the query/call establishment path, and ending at the terminating gateway. The terminating

gateways bill their bilateral peer, and each LS passes on the cost (possibly after adding some kind

of brokering fee) to its peer. Finally, the administrator of the first LS bills the caller. Effectively,

the exchange of a route is an offer to sell termination of calls to the numbers in the route. Peering

relationships go hand-in-hand with business relationships between providers.

Consider an example, shown in Figure 5.2. User X is a customer of provider A. User

X only has a relationship with provider A. User X makes a call, which uses a gateway run by

provider D. The services offered by this gateway are sold to provider C, who has resold them to

221

GW

X

Provider A

Provider B

Provider C

Provider E Provider D
Customer

Figure 5.2: Customer X uses gateway through bilateral provider relationships

provider B, who has resold them in turn to provider A. Provider D doesn’t know, and doesn’t care,

about the identity of user X. Provider D bills provider C for the call. Provider C bills provider B,

provider B bills provider A, and provider A bills user X.

The advantage of this model to the consumer is that their service provider (who owns the

proxy they sent their INVITE to) is ultimately liable for the service provided. The service provider

is responsible to determining what other service providers are worthy of peering. Should some

kind of fraud occur, the service provider for the user is responsible; they may, in turn, pursue

their peer for compensation. Another advantage is that the complexities of multiple providers

is completely hidden from the end user. The end user only needs one relationship with a single

provider that takes care of all the details. Since a direct relationship exists between the end user

and the service provider, shared secret security mechanisms can be used to authenticate the user

to the provider. Similarly, shared secret mechanisms can be used between peer providers. This

enables the system to work without a PKI.

The drawbacks to this approach are that the user does not have as much flexibility. The

servers they ultimately used are based more on the policy decisions of their service provider than

222

the needs of the customer. Cost to the consumer is likely to be higher. New service providers will

need to go through extensive negotiations with other providers to establish peering. These peering

relationships might even be regulated by government organizations. The model, not surprisingly,

is similar to how the telephone network operates.

5.4.4.2 Discussion

Indexed databases eliminate the central point of compromise that is present in the centralized

databases, regionally replicated databases, and distributed databases. Instead, there can be a

number of alternate paths between callers and gateways, so that the compromise of a single

provider does not necessarily compromise the system (although it still may, depending on the

topology).

Unfortunately, this benefit comes at the cost of increased query times. The increase comes

from the need to iterate or recurse on a query to hit all the database servers where the query might

be satisfied. The amount of time needed to complete a query depends on the number of servers

which must be queried before reaching a “terminal” database that contains the actual data, not a

summary. This depends on the structure of the database interconnection graph. With N servers,

the worst case is a simple line, shown in Figure 5.3 (each dot is a server, and each line is an

interconnection between servers), and the best case is a tree. Assuming each server holds both

data and indices, with data distributed uniformly across the servers, the result is average referral

chains of anywhere from N/2 servers (in the case of a line) to 1/2 log2N in the case of a binary

tree. This assumes perfect indexing. False positive matches can increase these numbers (although

there won’t be false positives for TRIP). How many hops might there be, in practice? In the PSTN,

there are at most six switches between any two points. Assuming the numbers are roughly the

same for Internet telephony, and assuming approximate query and processing times of 100 ms,

the increases in call setup will be approximately 300 ms on average, which is noticeable but not

unacceptable.

Indexed databases are also very complex. They require computation of indices (which

are often difficult to update incrementally as new services come and go), and most importantly,

require the construction of some kind of interconnection topology. These topologies must handle

223

��
��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
�� �

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

Worst case: line

Best case: tree

Figure 5.3: Worst and best case topologies for indexed database query times

failures, new servers, load balancing, failover, and administrative policy. To be done correctly,

this requires complex routing protocols, such as TRIP, and policy protocols, which, to our knowl-

edge, have yet to be addressed in the literature.

5.4.5 Multicast Push and Pull

An alternate architecture for discovery of services is through multicast. Generally, protocols for

multicast discovery fit into either a pull model, where the client interested in the service multicasts

a query, and responses are sent back (using either multicast or unicast) from service providers, or

into a push model, where service descriptions are multicast out to a group, and clients can listen

to them.

Multicast pull models are the basis for a variety of bootstrapping services, such as the

Service Location Protocol (SLP) [152] which contains a mechanism for discovery of a local

service through a multicast search, and the Multicast Address Dynamic Client Allocation Protocol

(MADCAP) [203], which contains a component that allows a client to discover its MADCAP

server through multicast. Multicast pull has also been used as a tool for content discovery in

mobile ad-hoc networks [204].

Multicast push works by having servers periodically advertise their services to the net-

work on a well known multicast group. SLP provides such a mechanism. It has also been used

in wide area networks for advertisement of media sessions, as part of the Session Announcement

Protocol (SAP) [68].

Multicast push and pull were used in conjunction as part of the Simple Service Discovery

Protocol (SSDP) [205]. SSDP builds upon HTTP with extensions to support transport over UDP

and multicast. Otherwise, it works in a similar fashion to SLP, but without a DA.

224

The primary benefit of multicast push and pull protocols is the absence of any third party,

which differs from all of the other architectures we have discussed. However, there are drawbacks.

Multicast pull protocols don’t scale to the wide area. The total query traffic for gate-

way discovery, 150 Mb/s, will actually be multicast to all gateways which listen for the queries.

Of course, since revenue is derived by accepting calls (and thus answering queries), gateway

providers are incented to listen for, and answer, all queries. This means the total network traffic

could be 150 Mb/s to 51,000 gateways across the wide area Internet, a substantial number.

Multicast push protocols can scale much better; servers can be programmed to rate limit

their advertisements (this is done in SAP, for example, using the reconsideration algorithm we de-

scribed in Chapter 3.) However, the convergence time for clients listening to these advertisements

is simply too long. If we assume clients are connected to the network through 56 kb/s modems,

the bandwidth for distributing service advertisements is limited to that. With 51,000 servers, each

with a description approximately 1kB in size, it will take slightly over two hours to learn about

all gateways. It is not acceptable for a client to need to wait two hours before making a phone

call. Caching of the data, or some kind of pull from a local server, can help. Indeed, this is the

basis for the Wide Area Service Discovery Protocol (WASRV) that we propose below.

5.4.6 Summary of Existing Architectures

Our conclusion is that each of the five architectures has some strengths and weaknesses, but

none alone seems sufficient. Centralized databases have substantial query loads and a middle-

man trust problem. Regionally replicated protocols eliminate the query loads, but still retain the

middleman problem. Distributed database protocols are difficult to apply to the general service

discovery problem because of the lack of a key upon which to distribute the data. They also have

fundamental administrative difficulties for the database administrator that limit their deployment.

Indexed databases provide excellent scalability, at the cost of increased query times, and don’t

suffer as much from the middleman problems, though they do exist. Multicast pull mechanisms

don’t scale. Multicast push can scale, and it eliminates the need for a middleman. But, it can

result in an undue burden on clients for caching.

As a result, we have developed a protocol called the Wide Area Service Discovery Pro-

225

tocol, or WASRV, which combines the best components of all three architectures [154]. We

describe this protocol in the next section.

5.5 Wide Area Service Discovery Protocol

We have proposed the Wide Area Service Discovery Protocol (WASRV) as an extension to the

Service Location Protocol (SLP). It combines SLPs strengths in query flexibility, auto-discovery

and rapid query resolution with wide area multicast dissemination mechanisms, similar in concept

to SAP. We make use of multicast to massively replicate the contents of the service databases in

each domain to other domains. Our use of multicast congestion control, similar to the operation of

RTCP, allows the multicast dissemination component to limit wide area data traffic to a controlled

rate independent of the number of database entries being replicated. By limiting the scope of

queries to within a domain only, data traffic is further limited and the response times for a query

become fast. Using multicast for data dissemination also means that replication within a domain

is trivial. This allows many servers to share the query load within a domain. Since data is

transmitted directly from domains that own services to domains that wish to use them, issues of

administration and security are simplified. By basing our protocol on SLP, we inherit its security

features, which primarily allow for secure authentication of the source of the data.

We also eliminate the complexities associated with indexed databases. The function of

building interconnection topologies is already solved for us by using the underlying layer-3 mul-

ticast routing architecture. This architecture provides for scalability, healing, and addition and

deletion of nodes. Rather than reinvent this at the query routing layer, we make use of it directly

at the IP layer.

The cost of our mechanism, and its primary drawback, is in the storage space and search

times required at a particular server. Because directory servers will contain large portions (but not

all) of the global server database, the storage requirements, and the time to search the database,

may be high for general services (although no worse than the centralized or regionally replicated

architectures). Furthermore, we can enhance the scalability by applying the indexing mechanisms

used in CIP and SDS locally within a domain, allowing us to partition data amongst servers while

avoiding the administrative burdens of wide area interconnection.

226

However, for gateway discovery, our mechanism works very well. The entire global

server database is quite small (51 thousand entries), and easily searchable with today’s tech-

nologies. The query load required (2822 queries per second) is now widely distributed across

providers, so that the load on any one system is very small. As of June 2000, in the U.S. there

were 160 Incumbent Local Exchange Carriers (ILECs) and 76 Competitive Local Exchange Car-

riers (CLECs). Assuming roughly that many service providers for Internet telephony, with users

uniformly distributed amongst providers, each provider would need to handle 1/236 of the query

load, which is approximately 12 queries per second. This is also trivial.

5.5.1 Terms

For clarity, we first define some terms in addition to those specified in SLP:

Service Location Protocol Domain (SLPD): An SLPD is a collection of UA’s, SA’s, and DA’s

under the administration of a single authority. DA’s within one SLPD provide service only

to those UA’s within the SLPD. SA’s within one SLPD may register their services using

SLP mechanisms only to DA’s within their SLPD. An SLPD is equivalent to a provider in

the discussions above.

Brokering Agent (BA): A brokering agent collects advertisements learned from AA’s in remote

SLPD’s. A BA is much like a DA, except that it may not collect information about all

service types. In a sense, a BA provides “brokering services” for a specific set of service

types that it knows about. Such a device is useful since the scope and range of services on

a wide area network can be large. To reduce storage requirements, and allow for optimized

processing and software, a BA only worries about one (or several) service types.

Advertising Agent (AA): An advertising agent is responsible for advertising information about

services within an SLPD. An SA, DA, or BA may act as an AA for some subset of the

services it knows about.

SLP Version 3: . We refer to WASRV as Version 3 of SLP.

227

5.5.2 Basic Operation

The multicast extensions allow for both wide area service discovery, and multicast-based regis-

trations within an SLPD. Its architecture is shown in Figure 5.4

AA

AA

BA

AA

DA

SA SA SA

SA

SA
SA

SABA

DA

SA

Multicast
Group for Service A

Registration
Group

Domain X

Domain Y

Domain Z

1

2

3

4
5

7

Figure 5.4: WASRV architecture

Within a domain, multicast can be used to allow SA’s to register themselves with SA’s

and/or DA’s. Multicast within an SLPD further enhances its scalability for very large domains

(like aol.com), where there may be a multitude of DA’s, each of which shares the load from

various SA’s.

The operation of the multicast registration within an SLPD is simple. The domain is

configured with a single, well-known, administratively scoped multicast group that is used for

multicast registrations. Call this the “registration group”. Note that this group address is different

from the ones currently used in SLP to discover services and send out DAAdverts. A version 3

DA listens to this group (line 2 in Figure 5.4), and version 3 SA’s send to the group (arrow 1).

Optionally, BA’s can listen to the group as well.

Within a domain, there may be a mix of Version 3 aware SAs and DAs. If there is

no version 3 DA and no BA, version 3 SAs would be wasting bandwidth by transmitting their

registrations over the registration group. To remedy this, we mandate that all BAs and DAs send

advertisements on the registration group. If an SA hears an announcement from any device on the

registration group, it begins using multicast for its registrations. If there are no announcements

on the registration group, the SA will unicast its registration to the DA. When there are a mix of

228

unicast and multicast capable DA’s, the SA will unicast its registrations to those non-multicast

capable DA’s, and multicast the registration as well. This allows an administrator to gradually

upgrade an SLPD from unicast only operation to multicast without complex administration or

configuration. The same mechanisms are used for Deregistration.

Some subset of the services available within the SLPD can be advertised onto the wide

area network to other SLPD’s. This advertisement is accomplished by means of an advertising

agent (AA). An SA, DA, or BA within an SLPD can be configured to act as an AA. When the AA

is colocated with the SA, it must be explicitly configured to advertise some subset of the services

known to the SA. When the AA is colocated with a BA or DA, scopes are used to determine

which services are to be advertised externally. An administrator assigns an SA to a scope if it

wishes its service to be advertised externally. An AA is given the private keys for the scope, and

will advertise any services it learns within that scope. This maintains the decentralized model of

service configuration, yet allows for administrative controls over which services are advertised.

For each service type, there is a wide area multicast group used for advertisements of

servers for that service type. The AA’s send these services to the wide area multicast group

(arrow 3). The AA’s must also join the multicast group (arrow 4). This allows them to count

the number of other AA’s which are advertising, and then scale the rate of their advertisements

proportionally in order to control multicast bandwidth usage.

The BA’s within an SLPD join the wide area multicast group corresponding to the service

types they wish to broker for (arrow 5). As a result, they will build up a service database of

services located in remote SLPD’s. An SLPD may have multiple brokers for a particular service

type. Furthermore, these brokers may not retain all of the advertisements they receive, dependent

on some local policy or policing operations.

BA’s also generate service advertisements that they send to the DA’s within their SLPD.

To do this, the BA acts as an SA. The service type it provides is the abstract type broker, and

the concrete type is the one corresponding to the service type they are brokering. The service

advertisement contains the service attributes of the brokering services that are provided. The BA,

acting as an SA, can register itself with the DA using the unicast mechanisms of SLP, or the

multicast approaches described here (arrow 7). In this fashion, the DA’s within an SLPD know

229

about all of the brokers within the SLPD. The DA’s can use this information to decide which BA

to contact in order to resolve a query from a UA.

Based on this description, a client can locate a service as follows. Using current SLP

methods, the client locates a DA in its domain. It sends out a request for a particular service to

the DA. The DA may be able to resolve the query. This may be possible if the required service

is within the domain. Otherwise, the DA cannot resolve the service request. However, a DA will

always know about the BA’s in each SLPD, and know which service types they are providing

broker service for. The DA can then contact the BA directly with the query, and then forward the

resolution back to the client. In this fashion, client behavior is unchanged between SLPv2 and

SLPv3.

Clients may also obtain information about BA’s in remote SLPD’s through some out-of-

band means, such as an advertisement on a web page, and then contact them directly with queries.

This allows for competitive broker services (For example, a BA with the largest collection of

service announcements from a media servers, with the fastest search engines, could offer its

services to UA’s outside its SLPD, and possibly charge for the brokering services provided).

5.5.3 BA URL’s and Attributes

Broker agents are both repositories for service information, and service providers themselves.

Since they listen to particular multicast groups to build up a service database for particular service

types, BA’s can be considered as providing broker services for those particular service types.

Consider a BA which collects service advertisements about the service type remote-fax.

This BA can then be considered as providing broker services for remote-fax; the BA can direct

users to the right remote-fax based on the attributes of the request. Since this brokering is a

service itself, it can be described by a service URL as well. If a broker provides brokering for

some service srvtype, then the URL for the broker service is [206]:

"service:broker:" srvtype "://" addr-spec

where the addr-spec is the address of the broker.

Furthermore, like other services, the broker service is characterized by attributes. These

230

attributes are always a superset of the attributes which characterize the service being brokered.

When a broker has a particular attribute and value pair which are also a valid attribute value pair

for the service, it means that the broker collects service registrations from servers which have that

value for the attribute.

5.5.4 Message Formats

SLPv3 defines no new messages or message syntax beyond what is described in SLPv2 [150].

However, some of the fields have a slightly different semantic. The differences are:

Version: This protocol document defines version 3 of the Service Location protocol. All multi-

cast registrations from SA’s, and advertisements from AA’s should have the version number

set to 3.

Bitfields: These have the same definition as in SLPv2. For multicast registrations and AA ad-

vertisements, the multicast bit is set. The overflow bit may not be set since all multicast

registrations are UDP.

XID: The XID field is used to distinguish updated registrations from unchanged registrations.

A registration message is considered unchanged if the attributes contained within are the

same as the ones in a registration which was previously sent. The XID field is set to 0 for

the first registration for a particular service URL. If the service attributes for that URL are

unchanged the next time the registration is sent, the XID field is not incremented, else it

is incremented by 1. This field helps BA’s and DA’s to decide whether or not to process a

message depending on whether they have seen it or not.

5.5.5 SA Behavior

Service Agents can operate in one of three modes:

Unicast registration: Registrations are unicast to the DA(’s) using only those mechanisms de-

scribed in SLPv2. This happens when all DA’s in the SLPD are v2, or the SA is v2.

231

Multicast registration: Registrations are multicast to the registration group. This happens when

the SA is v3, and ALL DA’s are v3.

Hybrid registration: Registrations are unicast and multicast. This happens when there is a mix

of v3 and v2 DA’s, and the SA is v3.

To determine which mode to operate in, the SA listens to the registration group. If, after

WAIT TIMER seconds after joining this group, the SA does not receive any DAAdvert messages

or Multicast Service Registrations from a BA which is brokering for the service type provided by

the SA, the SA decides to operate in unicast mode.

In unicast registration mode, the SA registers its services using the unicast mechanisms

described in SLPv2. The SLPv2 mechanisms will provide the SA with a list of DA’s, which we

call the unicast DA set, to which it must register. However, the SA continues to listen to the reg-

istration group. If, at any time, the SA receives a DAAdvert message or Multicast ServiceReg

from a relevant broker, it must switch modes to hybrid.

If, when listening to the registration multicast address, the SA in unicast mode receives

either a DAAdvert or Multicast ServiceReg message from a relevant broker, it switches to hy-

brid mode. In this mode, the SA begins to multicast its service registrations, based on the rules

described in Section 5.5.9. The SA also builds up a list of DAAdverts received from the registra-

tion group. The set of DA’s which are learned through multicast is called the multicast DA set.

This set is dynamic. Any DA which has not sent a DAAdvert for more than five times the current

transmission interval (this interval is the period between messages from an entity (BA, SA or

DA) to the registration group; see Section 5.5.9) is removed from the set. The SA continues to

unicast its registrations to any DA which is in the unicast DA set and not in the multicast DA set.

The SA also maintains a partial list of brokers. This list contains those brokers which provide

broker service for a service type advertised by the SA. Any broker which has not sent a Multicast

ServiceReg message for five times the current transmission interval is removed from the list.

If, at any time, the multicast DA set becomes a superset of the unicast set, the SA switches

to multicast mode. Furthermore, if the multicast DA set and broker list should become empty, the

SA reverts to unicast registration mode.

232

In multicast registration mode, the SA registers its services using the multicast mecha-

nisms described here. In this mode, all services supported by an SA are registered using mul-

ticast. If the multicast DA set should ever cease being a superset of the unicast DA set, the SA

reverts to hybrid mode.

This process is depicted in the state machine of Figure 5.5.

Multicast
Service
Reg is heard All DAs are

v3

v2 DAAdvert
Heard

Multicast
Service Regs
Timed Out

unicast multicast

hybrid

Figure 5.5: SA state machine

These basic rules allow an SLPD to be gradually upgraded from v2-only operation to v3

operation with no configuration. Of course, an administrator can force an SA to always unicast

its registrations to some set of DA’s if desired, even though the DA’s may be v3 capable.

5.5.6 DA Behavior

The behavior of a DA is nearly identical to that of SLPv2, with three major differences. The

first is that a DA may need to contact a BA to resolve the request. Secondly, a DA must listen

to the registration group to collect advertisements, and third, a DA must multicast its DAAdvert

messages on the registration group as well as the DA discovery group defined in SLPv2.

233

5.5.6.1 Multicast Listening

Both BA’s and SA’s may use multicast to register themselves with the DA. It is therefore necessary

for the DA to listen to the registration group used within the SLPD. By joining this group, the DA

will receive multicast service registrations from BA’s and SA’s.

A DA must keep all service registrations received from brokers. A DA may drop regis-

trations received from SA’s, but only if the DA knows of a BA in the SLPD which is providing

broker services for that SA. Otherwise, the DA must keep all service registrations received from

SA’s (unless forbidden by some special administrative policy).

This allows a DA to cease storing registrations from SA’s as soon as there is a BA which

is storing them. Since the DA always knows about BA’s, the DA will still be able to satisfy client

queries for local services by contacting the BA.

5.5.6.2 Contacting BA’s

In SLPv2, it is generally assumed that a DA knows about all services (at least within its scope).

However, in SLPv3, there are many reasons why a DA will not know about a service:

• The service is local to the SLPD. However, the SLPD is using the multicast mechanisms

for registering some of the SA’s. This means that there are BA’s within the SLPD, and that

the DA may therefore not store all service registrations it receives.

• The service is not local to the SLPD, and the BA’s are not colocated with the DA. This

means that information collected via multicast advertisements from remote SLPD’s are not

known to the DA.

Even though a DA may not know about a service, it will always know about the BA’s

within the SLPD which broker for that service type. This is because all brokers must register

themselves with all DA’s. This registration describes the service types which are being brokered

(via the URL), and the characteristics of that brokering service. These attributes describe, among

other things, the subset of the services which are brokered (for example, only those SA’s providing

remote-fax service with FILE-TYPE of TIFF). In that case, the URL path of all service:broker

234

URL’s should include the predicate describing the restriction. For example, the aforementioned

remote-fax broker would have a service URL:

service:broker:remote-fax://b3.brkr.com/FILE-TYPE=TIFF

When a DA gets a service request which it cannot resolve, since it doesn’t know about

the service at all, or one which it can resolve, but for which it has only partial information (since

there are brokers in the SLPD for that service), the DA should consult a broker. To determine

which brokers to consult, the DA eliminates those brokers which do not broker for the service

type and service which was requested. Such an elimination can happen if the service type is not

brokered, or because the service type is brokered, but the attributes of the broker indicate that it

does not broker for that particular service. The resulting set of brokers can potentially resolve the

request. The DA then further filters the list based on any local policy (for example, do not consult

brokers which require payment for their services).

The DA then acts as a UA, and sends a ServiceRequest message to each broker. It may

send a message to each broker in parallel, or in series. Each BA will answer the request with

a ServiceReply, containing a list of URL’s for servers which match the query requirements.

The DA may then send an AttributeRequest message to each SA to obtain additional attribute

information which may be required to resolve the original request. The DA should not cache the

resulting URL’s and attribute information. The final match is then determined, and a list of URL’s

is returned to the UA in a ServiceReply message.

Consider the following example. A UA formulates a query as follows:

(&(service-type=media-server)

(movie = eraser)

(cost<=*))

This query asks for a media server which has the movie “Eraser”, for which the cost of

viewing the movie is the cheapest. This query is then sent to the DA. The DA doesn’t know about

the media-server service, but it knows about two BA’s in the SLPD providing the media-server-

broker service. It then sends the query to each of the two servers. Both respond with one URL

matching the query (presumably the cheapest media server each knows about; this should be the

235

same, but may not be since there are no enforced database synchronization rules). However, if

the URL’s are different, the DA must determine which is actually cheapest. To that end, it sends

an AttributeRequest message to each SA containing the URL for the service. This yields a set

of attribute value pairs, including cost. The DA then selects the cheapest of the two, and returns

the resulting URL to the UA.

Note that if the query did not contain the operator <=* (the minimum operator) or the op-

erator >=* (the maximum operator), the AttributeRequest query would not have been needed.

This is because the minimum and maximum operators are relative; their results depend on the

values of attributes of other servers. If the operators are all absolute, the response to the Ser-

viceRequest from any BA will satisfy the query independently of the responses from any other

BA.

In order to improve scalability, the DA must not query the SA’s with an AttributeRequest,

as above, unless the UA request contains either the <=* or >=* operator on an attribute. If the

original request does not contain the MIN or MAX operator, the DA may return the entire list of

URL’s obtained from the BA’s, or it may return some subset as it sees fit.

5.5.6.3 Multicasting DAAdverts

As in SLPv2, the DA’s will multicast DAAdverts to make themselves known. However, in SLPv3,

DA’s will also multicast DAAdverts to the registration group. This effectively announces its

ability to receive multicast registrations. The rules for how to transmit the DAAdvert into this

group are described in Section 5.5.9.

5.5.7 AA Behavior

An Advertising Agent (AA), is responsible for advertising attributes about the services within its

SLPD to other SLPD’s. An SA, DA or BA may act as an AA for some subset of services which

it knows about. When the SA is acting as an AA, it is administratively configured with the set of

services to advertise. Other services which the SA administrator would like to have advertised,

but not by the SA itself, should be registered to the DA (and possibly BA) with a different scope.

When the BA or DA is acting as an AA, they advertise those services in scopes with which they

236

have been configured to advertise and provided private keys for.

AA’s send Multicast Service Registration messages to a wide-area multicast group (called

an advertising group). The rules for choosing the address of this group, and for when to send to

the group, are described below in Section 5.5.9.

5.5.8 BA Behavior

A BA is responsible for collecting multicast advertisements heard about a particular service.

5.5.8.1 Receiving Advertisements

A BA is administratively configured to broker for some set of service types, S. To do this, it

determines the multicast groups to listen to for each service in S (see the section below on mul-

ticast group selection), and then joins them. This will cause the BA to receive advertisements.

Since the mapping of services to groups is many-to-one, two services may both share a multicast

group. The BA must drop all service registrations received on a multicast group for which it is

not brokering.

5.5.8.2 Policy

Once the BA has received a registration for a service that it is brokering, it still has the option

of dropping this registration. It is within the rights of an administrator to configure a BA to

drop advertisements based on any criteria which can be programmed into the BA. This allows

administrators to implement policy, in much the same way BGP policies allow routers to choose

which routes to accept. Some examples of policies include:

1. The BA may drop all registrations received from a set of IP addresses.

2. The BA may drop all registrations which have an attribute set to a particular value.

3. The BA may drop all registrations which do not contain authentication blocks for the

URL’s.

4. The BA may only accept registrations with an attribute equal to a particular value.

237

5. The BA may only hold the most recently received 100 registrations.

This list is not meant to be exhaustive; it is only to illustrate that there is a wide range of

possible policies, limited only by the imagination of the administrator.

Note that these policies apply to services learned about from the wide area multicast

group. Services learned from the registration group inside an SLPD should not be dropped.

5.5.8.3 Policing

An optional mode of operation for a BA is “policing”. In this mode, the BA will discard adver-

tisements from AA’s who are sending messages faster than is allowed by the protocol operation

described below. This will hopefully deter AA’s from flooding advertisements to wide area group,

which is a form of a denial of service attack.

For each distinct AA which sends an advertisement, each BA will maintain a few pieces

of information. This information includes the last time an advertisement was received from that

AA, and a violation counter, which is initialized at zero. At all points in time, BA’s maintain

the current minimum transmission interval (described below), which reflects the smallest allowed

interval between transmission of a packet from any AA. When a packet is received from an AA,

the BA computes the difference between the current time, and the last time an advertisement

was received from that AA. If the difference is less than the minimum transmission interval, the

counter is incremented. In either case, the value for the last time an advertisement was received

is updated to the current time.

If the violation counter hits three, the BA should discard any further advertisements from

this AA. The BA may eventually reset the counter, and begin accepting advertisements again,

after some suitably long interval, at the discretion of the administrator.

This policing mechanism is just a variant on traditional leaky bucket policing algorithms

[207].

5.5.9 Sending Multicast Advertisements

Both within an SLPD, and across the wide area network, entities will periodically transmit mul-

ticast packets. This section discusses the rules by which these packets are sent.

238

5.5.10 Scheduling Transmission of Advertisements

The transmitting entity is assumed to have some set of packets, S, which it wishes to send to a

multicast group. This situation arises when:

• An SA within an SLPD wishes to multicast its service registrations to the registration group.

• A DA within an SLPD wishes to multicast its DAAdverts to the registration group.

• A BA within an SLPD wishes to multicast its service registrations to the registration group.

• An AA wishes to multicast some of its services to the wide area network.

The rules for transmission in all of these cases are identical:

An entity wishing to send to some multicast group must be a member of the group. Call

the time it first joins the group time t0. There must be only one entity per IP address that is sending

to a particular multicast group. This allows the IP address to be used as a unique identifier for

that entity. A multi-homed host should choose one interface for sending its messages.

After joining the group, the entity must continually maintain a list of all of the source IP

addresses seen in packets sent to the group. At any point in time, this list is used to determine

the group size estimate, L, which is a count of the number of other entities transmitting to the

group. This estimate is most easily obtained by counting the number of IP addresses seen. If

storage is limited, the entity may use statistical sampling to reduce the size of the list, and obtain

a statistical estimate of the group size estimate [86].

A fixed amount of bandwidth, B, is assumed to be available for packet transmissions to

the multicast group. By default, B is arbitrarily 8 kb/s, but it can be changed through configu-

ration. In this way, if there are 1000 entities sending to the group, the period between messages

from an entity is around 25 minutes on average. For ten-thousand entities it is a little over four

hours.

The entity selects an element (message) from S for transmission. If this element differs

from the information in the element last time it was transmitted, the XID of the message is

incremented, and the age of the message is set to zero. If the element is not different, the age of

the element is incremented.

239

Let tp represent the last time any message from the entity was transmitted. The time of

transmission for the next message, tn, is set to:

tn = tp +R(
1
2
)max(TFAST2min(16,age),

LK

B
) (5.1)

R(1/2) is a random number uniformly distributed between 1/2 and 3/2. K is the size

of the message in bits. TFAST is 1 second. This formula ensures that the total transmission

rate of packets to the multicast group never exceeds B, by evenly dividing this rate among all of

the L senders in the group. Furthermore, when group sizes are small, the packet rate is limited

depending on the age of the message. A new message is transmitted with a small period (TFAST ,

and the period increases as the age of the message grows. Eventually, the period increases to

about once a day.

When time tn arrives, the entity does not send the packet. It recomputes the above for-

mula, yielding a new time, t′n. If t′n is less than tn, the packet is transmitted, tp is set to tn, and

the entity selects another message to transmit, computes its transmission time tn as above, and

the process repeats. If t′n is more than tn, transmission of the message is further delayed until

time tn. This algorithm is identical to the unconditional reconsideration algorithm described in

Chapter 3.

5.5.10.1 Timing Out Senders

In addition to maintaining a list of IP addresses of senders to the group, each entity also maintains

the last time a packet was received from that sender. Furthermore, each entity maintains a timeout

interval, To, which is equal to

To = 5max(TFAST ∗ 65536,
LK ′

B
), (5.2)

where K′ is the MTU for the interface the entity is connected to. Any entity whose last

transmission time is earlier than the current time minus To is assumed to no longer be active, and

is therefore timed out. Its address is removed from the list of senders, and the group size estimate

is decremented by 1. An entity which sends a multicast deregistration is also removed from the

list, and the group size is decremented by 1.

240

5.5.10.2 Minimum Transmission Interval

For the policing operation, each entity may maintain an estimate of the minimum transmission

interval possible for compliant senders, which is

Tmin =
1
2

max(TFAST ,
128L
B

), (5.3)

This is nothing more than the minimum value for tn−tp from Equation 5.1. 128 is chosen

as the minimum value of K, the size in bits for an SLP packet.

5.5.11 Multicast Groups

There are two different cases for choosing the multicast group to send to. In the first case, the

entity is an SA, DA, or BA, advertising its availability within an SLPD. In this case, all messages

go to a single multicast group, called the registration group. This group is administratively scoped

[208].

For AA’s, advertisements are sent to wide area multicast groups. Each service is mapped

to at least one multicast group. This multicast group is obtained by applying a hash function to the

string which describes the service type (remote-fax, for example). The resulting value indicates

an index of a multicast group to use.

Furthermore, AA’s may also advertise onto private multicast addresses. This is useful

when a set of SLPD’s wish to share information about services, but only among themselves.

5.5.12 Reducing the Storage Requirements of a BA

If a BA chooses to act as a broker for a specific service type, it will end up storing all service

advertisements from all servers of this type. In order to reduce this problem, we can apply the

indexing and query routing techniques described in RFC 1913 [195], the Secure Discovery Ser-

vice (SDS) [196] and the Intentional Naming System (INS) [197], but do so locally, within each

SLPD.

To do this, each BA in an SLPD chooses a subset of the services to store. This subset

can be chosen in any arbitrary way, and can even overlap amongst BAs. Then, when each BA

241

advertises itself to the registration group, the service advertisement can either contain the filtering

rule applied to determine which subset of the service space is stored, or, if no such rule can be

constructed, an index or centroid can be sent instead.

The result is that we can reduce the storage requirements in a BA, but avoid the inter-

connection complexities of protocols like SDS by using the multicast registration techniques of

SLP.

5.6 Conclusion

In this chapter, we have introduced the problem of gateway discovery, and shown how it is a

subset of a more general problem of wide area service discovery. With a well-formulated set of

requirements for wide area service discovery, we investigated existing architectures for service

discovery to determine their strengths and weaknesses. We were able to classify existing solutions

as either centralized databases, regionally replicated databases, distributed databases, indexed

databases, or multicast push or pull. We found each to have strengths and weaknesses, so that

none was optimal.

We then presented our own protocol for service discovery, called the Wide Area Service

Location Protocol (WASRV), which we structured as an extension to the existing Service Loca-

tion Protocol. We were able to construct WASRV as a backwards compatible extension to SLP,

and demonstrate an easy migration path. We argued how WASRV compares favorably to existing

solutions, and combines the best aspects of all of them. We found it to be especially well suited

for the gateway discovery problem, although it does require deployment of multicast, which is

still in its early stages.

242

Chapter 6

Application Architecture

6.1 Introduction

As we outlined in Chapter 4, the primary role of signaling protocols are name translation, call

state modification, media stream negotiation, and participant management. Another important

function of signaling protocols are the invocation and delivery of features, applications and ser-

vices.

A feature is defined as a package of incrementally added functionality providing services

to subscribers or the telephone administration [209]. Examples of telephony features include

call forwarding, call hold, call transfer, Interactive Voice Response (IVR) and multiparty con-

ferencing. The term application is often used to describe a more complex feature. Examples of

applications include scheduled conference bridges, interactive voice response systems, and per-

sonal attendants. The line between application and feature is often blurry. We do not attempt to

make a distinction here, and we use both terms interchangeably. Service is a more general term.

It refers to any kind of value added function provided by one entity for another.

There are many problems that need to be addressed in order to provide telecommunica-

tions applications. The first of these is the service architecture problem – where does the code for

features and applications reside? How do the various components in the system interact with each

other to provide those features? How do the users interact with the systems to provide input to

the feature or application? This problem is different from the well studied, but equally important

243

and related feature interaction problem [209, 210] – how do multiple features and applications

interact with each other? How can multiple features be applied for a call without requiring each

feature to know about every other feature ahead of time?

In this chapter, we consider the service architecture problem for Internet telephony. First,

we discuss the requirements imposed on a service architecture, based largely on those aspects of

IP networks that are different from traditional telecommunications networks. With the problem

properly framed, we proceed to study the vast literature that exists on service architectures. We

segment these solutions into several categories, namely centralized architectures, distributed ob-

ject architectures, distributed component architectures, and mobile code architectures, and show

examples of past work in each of these areas. We discuss why the existing approaches in each of

these categories cannot meet the requirements for an Internet telephony service architecture. We

then proceed to present our own solution, the application component architecture, which com-

bines the best facets of existing work. After comparing it to the existing approaches, we conclude

and discuss future directions.

6.2 Requirements for an Internet Telephony Service Architecture

As we note in the Chapter 1, Internet telephony differs from traditional telephony in that there

exist other IP applications, such as web, email, instant messaging, and presence, which can be

used to enhance telecommunications services. We believe that the primary benefit of Internet

telephony to end users are the new services it provides. Services which combine other IP applica-

tions are principal amongst the new services which can be provided. A service architecture must

give consideration to how such applications are provided.

We wish to support a broad range of applications on our architecture. Of particular im-

portance are applications that require user interfaces during the execution of the application. Our

architecture needs to support user interfaces based on web input and voice input. Our architecture

also needs to support applications that are invoked by placing a call or by clicking on a link on a

web page. Our architecture needs to support applications that involve multiple users.

The architecture should enable development and execution of telecommunications appli-

cations by any third party. Furthermore, the system should enable an application to be composed

244

of services provided by several providers. For example, a particular application might make use

of a conferencing system from provider A, a messaging system from provider B, and a trans-

lation system from provider C. Allowing third-party service providers, and component service

providers, facilitates rapid development of new applications.

Finally, the architecture should allow for applications to be provided to users connected

to the telephone network, and should allow for service components within the telephone network

(such as conference servers and IVR servers) to become available as resources to users connected

on the IP network. Obviously, the user interface for applications will differ for users connected

via the telephone network, compared to users on a PC.

It is difficult to show that an architecture can support any application. In order to provide

basic validation, we consider four target applications with specific user interfaces. Our goal is

to demonstrate that the architecture readily supports these applications. The applications were

chosen because they cover a broad range of functionality. Our target applications are:

Pre-paid calling cards: In this application, a user purchases a calling card with a certain number

of minutes of usage. To make a phone call, the user dials an access number. A voice

response system answers, and prompts the user to enter the PIN number written on the

calling card. Once the PIN has been entered (using the dial pad), it is verified by the

system. The user is then prompted to enter the destination phone number. The user enters

it on the dial pad. The application completes the call to the destination number. If the user

uses up their minutes, the application terminates the call.

Click-to-dial: In this application, a user browses the web site of some retail vendor. The user has

a question on some product provided by the vendor. The user has the option of clicking on

a hyperlink to call the customer service desk. Clicking on the link fetches a form. The form

asks the user to enter in their home phone number. Once the user enters in the number, and

submits the form, the user’s home phone rings. When they pick up, the customer service

representative is on the other side.

Auto-conference: This application is used to start conference calls automatically based on a

presence service that detects the availability of the conference participants. A presence

245

service, defined in RFC 2778 [91], is a system that allows subscribers to request notifi-

cations when the status of a desired user changes. Here, status refers to the ability and

willingness of a user to be communicated with. In the simplest systems, a user’s status is

available when a user logs in to their computer and connects to the presence service, and

unavailable when they disconnect. More complex systems may determine that a user is

unavailable when they are logged in, but in the middle of a phone call. Furthermore, the

status of a user can be much more complex than just “available” or “not available”. It can

convey numerous means of communication, addresses of communication, and willingness

to communicate with those addresses [91].

To use the auto-conference application, a user views a web page containing a form. The

form contains the email addresses and phone numbers of the conference participants. Once

submitted, the application waits until all participants are available, as determined through

the presence service. When all are available, the application sends each participant an

instant message. The message asks each participant if they actually wish to join the confer-

ence. It contains two hyperlinks, both of which resolve to the controller. One is clicked if

the user wishes to join the conference, and the other, if they do not. If all click the hyperlink

to join the conference within a specified time interval, the application rings the phone of

each participant, and then connects each of them into a conference.

Web form entry for call center: This application is used to facilitate call centers, which provide

customer support services to users. When a user has a question regarding a product they

purchased, the user calls a customer service number. Before the call completes, the user’s

web browser automatically fetches a web page containing a form. The form prompts the

user to enter in the product number in question, and other relevant customer information.

When the user submits the form, the call completes to a customer service representative.

The form data is provided to the customer service representative, in their web browser,

when the call completes.

Speech-to-text for the hearing impaired: This service allows a hearing impaired user, who can

only communicate with text chat, to interact with a non-impaired user on a regular tele-

246

phone. The non-impaired user calls the number of the hearing impaired user. This causes

the text chat tool of the hearing impaired callee to flash, indicating an incoming call. The

called party clicks on a button to accept the call. When the call is completed, the callee

can type text into their chat tool. All text is converted to speech, using text-to-speech algo-

rithms, and presented to the caller. Anything said by the caller is recognized using speech

recognition algorithms. The resulting text is presented to the callee in their chat tool.

6.3 Existing Architectures

In this section, we review existing work on telecommunications service architectures, and show

how they do not meet the requirements outlined above.

Much work has been done in this area, as we will show. To structure the presentation, we

characterize existing work into several general approaches. The first are centralized architectures,

where a single element is responsible for providing the features and applications for the users it

manages. The second are distributed software architectures, where distributed object techniques,

frequently based on CORBA, are used to design distributed systems. More recently, work has

begun to emerge on distributed component architectures, where reusable components are defined

to provide features. Finally, much work has been done on mobile code, where the code for an

application is dynamically downloaded into a device (either the client or a server) for provision

of the features and applications.

6.3.1 Centralized Architectures

6.3.1.1 Intelligent Network

The most important instance of a centralized architecture is the Intelligent Network (IN), which

also happens to be the most widely deployed architecture. The Intelligent Network is a collection

of standards codified by the International Telecommunications Union, Telecommunications Sec-

tor (ITU-T). It is first introduced in Recommendation Q.1201 [211], which provides the model

for IN, duplicated in Figure 6.1. Faynberg [212] provides an excellent overview of IN.

The figure shows that the IN can be modeled as a number of distinct planes. The first

247

F
E
A

EF

EF

.

.
F
E
A

EF

EF

.

.
F
E
A

EF

EF

.

.

BCP BASIC CALL PROCESS
EF ELEMENTARY FUNCTION
FE FUNCTIONAL ENTITY
FEA FUNCTIONAL ENTITY ACTION
IF INFORMATION FLOW
PE PHYSICAL ENTITY
POI POINT OF INSERTION
POR POINT OF RETURN
SF SERVICE FEATURE
SIB SERVICE INDEPENDENT BUILDING BLOCK

SF1 SF2 SF3

SERVICE PLANE

BCP

SIB3

SIB2

SIB1POI

POR

GLOBAL FUNCTIONAL PLANE

IF

IFIF

FE2

FE3

FE1

FE1
FE3

PE1

PE2

PHYSICAL PLANE

FE1

DISTRIBUTED FUNCTIONAL PLANE

Figure 6.1: IN conceptual model

is the Service Plane, which contains services (such as call-forward and freephone). The Global

Functional Plane (GFP) defines these services in terms of atomic operations, called Service-

Independent Building Blocks (SIB’s). A SIB can be thought of as a “network level” machine

instruction inside a computer. It defines a basic function on a piece of data. Some of the SIBs are

Compare for comparing two values, Queue for queuing a call, and Screen for rejecting incoming

calls. The GFP also defines the interaction between the telephone switch and the service logic on

the general purpose computer, by means of a state machine on the switch (the Basic Call Process,

or BCP), and remote procedure calls to the computer. The telephone switch has certain points

in the progress of a call where remote procedure calls can be made (Points of Initiation (POI)),

and points in the call where the service logic can instruct the switch to return to (Points of Return

(POR)). Examples of POI’s are Address Collected and Busy, which occur in the BCP when the

248

digits for the call are collected, and when the remote party signals busy, respectively. Examples

of POR’s are Initiate Call and Clear Call.

The next plane is the Distributed Functional Plane (DFP), which maps the abstract GFP

into functional blocks, and then defines the required flow of information between them. Finally,

the DFP is realized in the Physical Plane, which maps the functional entities into real devices. The

IN defines a number of devices, including a Service Switching Point (SSP), which is a telephone

switch, a Service Control Point (SCP) which is a general purpose computer that can execute the

remote procedure calls from the switch, and a Service Node (SN), which executes service logic,

but also has a switch fabric so that it can generate tones, play announcements, and provide ad-

ditional services. The physical plane also defines the protocols amongst these entities. Most

important among these is the IN Application Protocol, or INAP [213], which carries the informa-

tion for the information flows defined in the DFP. INAP can be thought of as a special-purpose

remote procedure call protocol.

TRANSIT
SWITCH

ORIGINATING TERMINATING
SWITCHSWITCH

SCP SCP
TRANSIT
SWITCH

1

2 3

4

5
6 7 8

9

Figure 6.2: Call flow for a phone call

A simplified example of a call flow for a phone call that makes use of IN services is shown

in Figure 6.2. In this figure, a call originates at the calling phone, which dials an 800 number. The

call signaling arrives at the originating switch (1). Since the switch does not know how to handle

the 800 number directly, it asks the SCP for further instructions (2), and the response (3) specifies

the further actions the switch should take, including a routing number where the call should be

connected to (4). The call passes through another transit switch (5) and eventually arrives at the

terminating switch. This switch also consults an SCP for instructions (6), and the response (7)

tells it to complete the call to a subscriber line (8).

The IN has been standardized incrementally, starting with a baseline set of services and

249

associated call models and protocols (call IN capability set 1, or CS1). Increasingly more complex

services, models, and protocols have been developed as part of capability set 2, and more recently

capability set 3. The services enabled with CS1 include freephone, televoting, follow-me, call

screening, and call forwarding, among others. IN Capability Set 2 (CS2) supports more powerful

features, such as call transfer, call waiting, message store and forward, and conference calling.

Although the conceptual model alludes to distribution of the feature through SIBs, the

SIBs for a single application reside entirely within the SCP which provides that application (orig-

inating or terminating).

Application of the IN concept to IP telephony is not hard. Instead of switches, proxy

servers (or more likely, back-to-back user agents (B2BUA)) are used. The proxy or B2BUA runs

a call model. It interacts with some kind of IP-based SCP, which provides instructions on how

to proceed with call processing. Significant work has been done on mapping the states of a SIP

proxy server to IN call models, in order to facilitate this kind of architecture [214, 215, 216, 217,

218, 219, 220, 221, 222].

However, this approach does not meet the requirements we have outlined in Section 6.2.

Specifically, the dependency on a call model as a trigger for services makes it difficult to integrate

other IP applications, such as instant messaging and presence, which might also generate events

that need to trigger call processing. The centralized nature of the architecture does not facilitate

provision of application components by a third-party. Finally, the IN approach does not foster

rapid development of services. This is because it is difficult to reuse application code; there are

no well defined internal interfaces or techniques for communicating with external entities.

6.3.1.2 MGCP

The Media Gateway Control Protocol (MGCP) [223], and its successor, the MEGACO protocol

[224] are IP-based master-slave control protocols. They allow a centralized agent, called the

Media Gateway Controller (MGC), to control one ore more slave devices, called Media Gateways

(MG). The MG is able to connect together logical voice channels under its control. These logical

voice channels can represent circuits on trunks that terminate on the gateway, or they can represent

the voice generated from a handset on a telephone. Media events also occur on these channels.

250

These events include generation of DTMF, hookflash, and other tones. The control primitives

in MGCP/MEGACO allow the MGC to subscribe to events on the channels in the MG. This

way, the MGC can be alerted when the “pound” key is pressed on a telephone, for example.

MGCP/MEGACO also allow the MGC to instruct the MG to connect logical voice channels

together in some fashion. This includes taking a channel, compressing it with some encoder, and

sending it over an IP network to a specified address, using RTP.

In essence, the MGC can be viewed as an extension of a class 5 switch into the Internet

telephony realm. The only difference is that a class 5 switch actually sees the bearer circuits

and switches them; an MGC gets notified about events on the bearer circuits and tells the device

where to send them. As a result of this, services can be built on top of an MGC in much the same

way they can be built on top of a class 5 switch.

For this reason, the same IN principals can be applied to services on an MGC. Even

if IN is not used, the MGC can serve as a central point for the provision of services to end

users, connected to that MGC. This model has been proposed by Huitema et al. [225], and has

been more formally specified by the PacketCable Forum in its Network Control Signaling (NCS)

specifications [226].

The MGCP approach has the same issues with meeting our requirements as the IN archi-

tecture.

6.3.2 Distributed Software Architectures

In this general class of architectures, the system is specified through the interconnection of dis-

tributed software components. Often, the communications between components is based on some

object middleware, such as the Common Object Request Broker Architecture (CORBA) [227].

Services are provided by defining APIs on several objects distributed throughout the system. The

systems all vary in the types of objects defined, and the interfaces between them. Blum and Molva

provide an excellent overview of some of the early distributed software platforms developed for

multimedia services [228].

Early work on distributed object systems for telecommunications focused on their ap-

plication to a specific problem domain: computer supported collaborative work (CSCW). Hofte

251

[229] describes the implementation of a CSCW application on top of CORBA.

Blum and Molva [228] describe a system for distributed multimedia applications, called

the Application Pool and Multimedia Terminal (APMT) architecture. It is based on CORBA,

and allows clients to download scripts, usually in Tcl/Tk [230], that define a user interface to an

application. The application itself resides on application pools, running on servers in the network.

The platform provides primitives for establishing connections between entities in the system.

Arango et al. [231, 232, 233, 234] describe the Touring Machine, one of the earliest

platforms for multimedia applications. Originally conceived for circuit networks, the Touring

machine was extended to later cover packet networks [235]. The Touring machine was imple-

mented as a set of distributed objects, using a custom distributed object protocol. The objects

used to provide features include a station object, which models the points of attachment of users

to the system, a session object, which represent a call or conference (and are created dynamically

as new calls arrive into the system), and a name server. The system supports development of new

features by exposing APIs on the station objects. The APIs are monolithic and limited in what

they can provide [228]. Since the APIs are limited to those used by clients to attach to the system,

there is no specific provision for new services provided by third parties.

Another early platform for multimedia applications is Beteus [236], which stands for

Broadband Exchange for Trans-European Usage. It was primarily aimed at distributed multime-

dia classrooms, using an ATM network. It provided a limited API on one of its Site Manager, that

enabled interconnection of sites and users. However, it does not scale, does not allow third party

applications.

The Medusa system [237] provides an object-oriented distributed system for a variety of

multimedia applications. It is more complete than many of the other earlier systems. Modules,

which are the primary components of the system, were defined to provide conferencing, speech

recognition, and gesture recognition, amongst many others. An application is constructed by

chaining together modules, each of which provides different functions. The basics of the com-

munications between modules is specified. The interface (which uses Tcl-DP [238]), allows for

subscription and notification of changes in state variables, and the setting and getting of attributes.

The use of distributed object systems as the basis for an Internet telephony service ar-

252

chitecture has some advantages. It facilitates distribution of components, allowing for the de-

velopment of applications by third parties (at least in principle) and reuse of software to enable

rapid prototyping of new applications. The systems can provide integration with other Internet

applications. For example, since APMT allows for downloadable GUIs into clients, the GUIs can

interact with the CORBA system and also with the web and other IP applications.

However, distributed object systems have some drawbacks. In order to truly provide third

party development of components, standardized interfaces need to be defined between compo-

nents. In other words, having a common RPC mechanism, such as CORBA, is not sufficient for

interoperability. Unfortunately, each system described above uses its own, proprietary interface

between components. Related to this, there is no clear way, in most cases, to access service com-

ponents on the PSTN. A gateway could be constructed between the distributed system and the

PSTN. However, the service interfaces defined on these systems do not map cleanly to the call

signaling protocols used in the telephone network.

Another drawback is performance. The generality of the IP Inter-Orb Protocol (IIOP),

used as the middleware protocol between components, comes at the expense of performance.

Studies have shown that CORBA performance falls far short of more specialized communica-

tions protocols [239], however the applicability of these results to telecommunications service

architectures is questionable (Gokhale [239] considers large TCP segments, which are unlikely

for our application). We believe, however, that protocols developed for a specific application will

generally outperform more general purpose protocols, in terms of latency and efficiency.

More significant, however, are the issues related to extensibility and interoperability. In-

teroperability between a CORBA client and the object implementation requires that both be based

on exactly the same Interface Description Language (IDL) description. If we wish to extend the

functionality of the system, the only method defined is through interface inheritance. This will

allow the server to be improved with new methods, and yet still allow older clients to access its

services. However, extensibility is more complex than just this scenario. A common case for

network protocols is where the client wishes to request server processing of an optional feature

defined in an extension to the protocol. The protocol can define mechanisms whereby optional

features are completely ignored by the server if the extension is not supported, but processed if the

253

extension is supported. This extensibility model is not possible with simple interface inheritance.

These drawbacks will probably not be problematic in systems constrained to a single enterprise,

but when systems are distributed across multiple providers and evolve over many years, which is

a requirement we have defined for an Internet telephony service architecture, the limited support

for extensibility is problematic.

Finally, CORBA requires that a client have a handle to the object on the server before

using it. It can obtain this handle through a naming system, or through a discovery service.

This discovery service only works within a domain, as does the naming service. This limits the

usefulness of CORBA for interdomain operation. On the other hand, network protocols can be

defined which provide this capability.

Therefore, we believe distributed software architectures, generally based on CORBA,

meet some, but not all, of our requirements. Specifically, they do not adequately address the

ability for third parties, in other domains, to provide components for an application. Their weak

support for inter-domain interoperability is problematic for Internet telephony, which is, by defi-

nition, based on communications between users in different domains.

6.3.3 Distributed Component Architectures

Component Based Development (CBD) for software engineering has emerged as a new tool for

the construction of distributed applications. D’Souza [240] define CBD as “an approach to soft-

ware development in which all artifacts - from executable code, to interface specifications, archi-

tecture, and business models; and scaling from complete applications and systems down to small

parts - can be built by assembling, adapting, and wiring together existing components into a vari-

ety of configurations”. Component architectures are rooted in the premise that applications have

components which recur time and time again in the same form. The characteristics of components

are outlined by Jung [241]:

• They are decoupled, allowed them to be independently developed and delivered.

• Components have well-specified interfaces for the services they provide.

• Components have explicit and well-specified interfaces for services it expects from other

254

components.

• Components can be customized and composed with other components without modifica-

tion of code.

Reusability is a key component of the CBD model, and it is the underlying concept in all

of the characteristics defined by Jung [241]. Another key concept in the CBD model is that there

is some mechanism to assemble the components together. In this context, assembly refers to the

temporal ordering of component operation in order to provide an application.

In a distributed CBD model, the components can be physically separated.

CBD has traditionally been implemented using object-oriented programming techniques.

The JavaBeans specification [242] is perhaps the most widely used object oriented approach for

component systems. It specifies that each object (called a bean) must implement methods which

allow it to be queried for a listing and description of its interfaces. Beans are also required to

conform to specific naming conventions for methods. However, it is important to realize that

component architectures are more general than object oriented systems, and can be realized in

many ways, as we discuss below.

Work on CBD for telecommunications application architectures is fairly recent. Mennie

and Pagurek describe a system of dynamically composeable components [243], building on the

pipe and filter model of Zave and Jackson [244]. They use Jini as the primary tool to discover

service elements, and then fetch an XML-based service definition template which describes the

inputs and outputs of the system. They then make use of JavaBeans to connect and communicate

between components. However, they do not detail the methods defined by the beans in their

system.

Jung and Biersack [241] consider the problem of statically composable components using

JavaBeans. However, they consider a very wide range of components, focusing on those that

provide any type of communications system, not just those for telecommunications system.

Gbaguidi et al. [245, 88] have proposed a component architecture specifically aimed at

hybrid services, which combine Internet and PSTN services. Their components are based on

JavaBeans, and they achieve interaction with the PSTN by assuming an interface between their

beans and existing SCP elements in the Intelligent Network. Despite their claims at a component

255

model, they do not clearly specify the set of components in their architecture, why they are

reusable, or what the interfaces are.

Mennie and Pagurek [243] made the important observation that their architecture was

based on the DFC work of Zave and Jackson [244]. In the DFC architecture, features are pro-

vided to users by composing together reusable components called boxes. Calls enter and leave

the system through line interface boxes, and within the system, are connected together through

feature boxes that provide call filters. The interfaces between boxes use internal calls. The set of

feature boxes brought into a particular call are called a usage. A typical usage scenario, repro-

duced from Figure 1 of Jackson and Zave [244], is shown in Figure 6.3.

Switch
LI1

FBb

FBa

LI2

DFC System

Caller

Called Party

A

B

Figure 6.3: A usage in the DFC architecture

In this scenario, user A calls user B. The call enters the system through a line interface

box, LIB1. It then is passed to an internal switch, also known as a feature router, which deter-

mines that the call is to connect to a particular feature. So, it routes the call to the first feature,

feature box A, FBa. FBa may do some processing, and then, in this case, forwards the call. The

feature router connects the call to a second feature, encapsulated in feature box B. This feature

may do some processing, and then it forwards the call as well. Finally the call is connected to

another interface box, and then eventually to the callee. Feature boxes may behave transparently,

in which case they do nothing but forward the call onward to another element. The communica-

256

tions between boxes in DFC uses a call signaling protocol that includes messages such as setup,

teardown, and quickbusy (which indicates that the call could not complete because resources

were not available).

The DFC work is also effectively a component model for services, although it is not

presented that way by the authors. The composition of feature boxes into a usage is effectively

a tool for assembly of more complex features; however, the authors view it more as an artifact

of feature interaction than as a specific paradigm for constructing services. Interestingly, the

implementation of DFC, known as ECLIPSE [246], is not based on Javabeans, but rather on

custom protocols between components.

The CBD architectures discussed here have similar drawbacks to the distributed object

architectures in Section 6.3.2. Their usage of proprietary JavaBeans interfaces, or proprietary,

single application protocols (in the case of DFC), make it difficult to support third party appli-

cation component development. However, the component model provides a better paradigm for

third party service providers. Since the components have well-defined and reusable functions,

they can be used to support many different applications. This is beneficial to the provider of such

component services, since it means increased usage, and therefore, increased revenue.

6.3.4 Mobile Agents

Work has taken place on the application of mobile agents to Internet telephony services. Mobile

agents are software entities that move around the network in order to perform specific tasks. We

consider two different types of mobile agent architectures, general purpose languages and domain

specific languages.

6.3.4.1 General Purpose Languages

With general purpose languages, the code that is transported through the network is written in a

Turing complete language, such as Java.

Pagurek, et al. [247] propose a scheme for constructing services in H.323 using mobile

agents. Their work focuses primarily on how available services are discovered, subscribed to,

customized and loaded into systems.

257

Gessler et al [248] promote a service architecture based on mobile Java agents. Complex

services are constructed through the communications between three components, one stationary,

and two mobile. The stationary component resides on a server in the provider network, and

executes the core components of the service. One of the mobile components is used to define

trigger conditions at the callee’s site, and the other is used for service invocation. For example,

the latter component might be a series of buttons on the GUI of the caller’s tool. Clicking a

button causes communications with the server in the provider domain to execute the service.

Gessler does not provide much detail on the actual Corba interfaces they use.

Rizzetto et al. also define an architecture for downloading agents into H.323 gatekeeper

platforms. These agents represent the participants involved in the call. The agents communicate

and negotiate in order to deliver service [249].

Mobile agent technology has significant drawbacks for meeting our requirements. There

remain significant interoperability, reliability, and security issues raised by transmitting code

across the network. These issues imply that mobile agents cannot meet requirements to support

third party application component providers.

6.3.4.2 Domain Specific Languages

The mobile agent problem becomes somewhat more tractable when, instead of transporting code

for Turing complete languages, code for domain specific languages is transported. Domain spe-

cific languages can be designed with limited functionality, eliminating many of the security and

interoperability issues. As an example, the Call Processing Language (CPL) [144, 250, 251] is

a domain specific call control language, specified in XML, that users can upload into signaling

servers in order to provide services [129].

Another example of a domain specific language applied to mobile agents is TOPS. Aner-

ousis et al. have defined a complete architecture for Internet telephony, called Telephony over

Packet Networks (TOPS) [252, 253]. Their architecture includes a signaling protocol, database

components, media transport, conferencing servers, and QoS mechanisms. To make a call, the

calling party queries the database server of the callee, and obtains a Call Handling Profile (CHP),

which are a set of directives used by the caller to contact the callee. The CHP contains a list of

258

prioritized addresses, representing the call appearances where the caller can be reached. Services,

such as call forward no answer, are provided by including additional directives in the CHP.

Effectively, the CHP represents a form of mobile code that is downloaded into the client

at call setup time. Since the “code” is not a real program, the mechanism does not suffer from the

security and reliability problems of downloadable Java and related approaches.

The drawback of the domain specific language approaches are that they cannot support

complex applications. Both TOPS and CPL are good for call routing, screening, and logging

applications, but not much beyond that. None of the target applications outlined in Section 6.2

are enabled by either TOPS or CPL.

6.4 Application Component Architecture

Our solution is a new service architecture based on the CBD paradigm, which we call the Appli-

cation Component Architecture, or ACA. They key ideas underlying ACA are:

Coarse granularity: We define our components as coarse grained elements. Much of the exist-

ing work has defined very fine-grained components. For example, Gbaguidi et al. [245, 88]

define a component for a call forward feature, which is very fine-grained. Using coarser-

grained components brings greater value to each particular component, and increases the

likelihood that a third party provider would be willing to construct and offer that component

as a stand-alone service.

Restricted problem space: Unlike Jung and Biersack [241], who attempted to describe com-

ponents for arbitrary communications systems, we focus on components that can be used

to construct a class of Internet telephony applications. This class includes those applica-

tions with conferencing, dialogs, web interfaces, presence, translation, speech-to-text, and

text-to-speech. By focusing on a specific class of applications, we can do a good job in

specifying well defined components, something we have found lacking in prior work.

Use industry standard protocols: The interfaces between our components are not based on

Corba IDLs or Javabeans. Rather, they are industry standard protocols for call control,

259

data transfer, and dialog scripting. By using industry standard protocols, which already

provide inter-domain operation, scalability, performance, and security, we can realistically

enable third party creation of application components and services.

Unify user-to-component and inter-component interfaces: The interface between users of a

service and our platform are the same as the interfaces between components within our

platform. This allows components themselves to be further decomposed into components.

The result is what D’Souza [240] calls a “fractal” topology for components, where each

component can be broken up into smaller and smaller components. This is a key concept

in the Catalysis paradigm for component architectures [240], and it improves the ability to

more rapidly construct complex applications.

The component assembly is the application: In our model, the set of components in the ser-

vice, way the components are assembled - their ordering, their inputs and outputs - are what

define the application, and are what differentiate applications from each other. Therefore,

we define a specific component, the controller, whose sole job is to dynamically assem-

ble components together to drive the application, as it executes. The controller, which is

described in Section 6.4.7, assembles components by using third party call control.

Components can be run by third parties: The components in our model can not only be im-

plemented by third parties, they are actually run and executed by third parties as component

services. This requires that the system be capable of dynamically discovering and commu-

nicating with entities whose location is unknown. We enable this dynamic composition of

components by using industry standard call control protocols, SIP in particular, as a key

piece of the interface between components.

The ACA architecture is shown in Figure 6.4. The system has users, which represent

people or machines that wish to invoke some service. The users are connected to an IP network,

either directly (using a IP phone), or through some form of gateway from the PSTN. Users make

and receive calls using SIP. Sometimes, users have web browsers, which they can use for control

of applications. In that case, the users are capable of initiating HTTP requests. Users are also

capable of sending and receiving media traffic (audio and video) over RTP.

260

DB

Component

Presence

Component

Messaging

Component

A
pp

lic
at

io
n

C
od

e

A
pp

lic
at

io
n

C
od

e

A
pp

lic
at

io
n

C
od

e

Dialog

Component

Mixing

Component

TTS

Component

Translation

Component

Voice
Mail

Component

Controller
Component

User

RTP

SIP

HTTP

Session Components

Component

Gateway

Figure 6.4: Application component architecture

We recognized that a particular theme was common in our target applications. There were

pieces of the applications where a user needed to connect their media stream to some device,

which would perform a media related function, and then, at some point later, the user disconnects

from the device. For example, in the pre-paid calling card application, when the user runs out of

money, they are played a prompt and asked to enter in their credit card number. Once thats done,

the credit card is verified and the call is reconnected. This piece of the application requires the

user to connect their media stream to a dialog component, which interacts with the user over the

media stream, and collects the credit card. When the data is collected, they are disconnected from

the dialog component, and their media stream is reconnected to the callee. This dialog component

arose in other applications, such as auto-conference, as well. As a result, we define a general set

261

of components that we refer to as session components. These are components that originate

and terminate media streams. There is a distinct process of connecting to, and disconnecting

from, these components. They generally provide a well-defined and reusable media processing

function.

We recognize that there were many other types of session components that can be involved

in an application. We can classify session components into three general categories, which are

format translation, storage and playback, and semantic translation. A mixing component pro-

vides media mixing services, bridging together the media streams from some associated group

of users. It is an example of a component that provides format translation. A translation compo-

nent provides language translation services. It takes the media it receives, recognizes the speech,

translates it, synthesizes text, and generates speech back out. It is an example of a semantic

translation component. A voice mail component receives calls, and allows the caller to leave a

message or hear messages left for them. It is an example of a storage and playback component.

A text-to-speech, or TTS component, receives text as a continuous media stream, and converts it

to speech, reflecting it back. It is an example of a semantic translation component.

All of the session components use SIP and RTP as their interfaces. Generally, the session

components are just User Agent Servers (UAS), as they do not initiate calls. Interaction with the

component begins when the component itself is “called”, by sending it a properly formatted SIP

INVITE request. By properly formatted, we mean that the session component is addressed in a

particular fashion. In SIP, users and devices are addressed using the Request-URI, which defines

the recipient of the request. In typical SIP usage, this is an email-like identifier for a person.

However, in this case, the Request-URI identifies the component, which is a piece of software,

and defines the exact service that is to be provided by the component. As a simple example, a

SIP INVITE sent to sip:dialog23@dialogservers.com might indicate that a specific

named dialog, dialog 23 (which perhaps prompts the user for a PIN number) is to be executed.

Once the INVITE is accepted by the session component, a media session is established between

it and the client which has called it. The client sends media to the component, and it is processed

according to the functional specifications of the component. Media is returned to the caller. The

content of that media stream also depends on the functionality provided by the component.

262

Session components send RTP between themselves and users. Session components can

also send RTP between each other. An example would be a conference that has its contents

recorded. In this case, a dialog server would be one the entities receiving the mixed media stream

from the conference server.

We also define several non-session components. These include a presence component,

instant messaging component, and a database component. These are discussed in Section 6.4.6.

The central element of the architecture is the controller. It is the first point of contact

for initiating an application. Applications are triggered by receiving a call at the controller, or

through a click on a web page, delivering an HTTP request to the controller. The controller

coordinates the involvement of several other components in the completion of the application,

assembling them together to form a complete application. It assembles them by accessing them

directly, or by connecting media streams from another device to them. The controller is the one

and only point of processing of user input to the system. It can receive user input through SIP

signaling (when the user hangs up a call, for example), direct HTTP requests (when the user

submits a form), or indirect HTTP requests (when the dialog server interprets speech or DTMF in

the voice stream, and informs the controller by sending it an HTTP request). Effectively, stimulus

signaling is delivered to the controller through HTTP, and functional signaling through SIP. The

controller never receives or sends media. It is purely in the signaling and control plane.

Most importantly, the controller is the one and only place in the architecture where appli-

cation specific code resides. All of the other components are general purpose, and need not run

specialized code in order to provide applications. This eliminates any need for mobile code, and

the security problems it causes. It also simplifies management and feature interaction, since the

code for an application resides in one place, even if the components are distributed around the

network.

In the subsections below, we detail the interfaces and operations of these components.

Specifically, any component architecture is obliged to define how its components are discovered,

what the inputs and outputs are, and what the nature of the service provided is [243].

As a matter of terminology, we refer to the term client as the entity that requests service

from a component. Normally, the client is the controller. The client is not the end user in most

263

cases.

6.4.1 Dialog Component

The primary function of a dialog component (which we also refer to as a dialog server) is to use

voice prompts and menus to interact with a user (which is not necessarily the client which has

invoked the services of the component), for the purposes of conveying and collecting information

through voice. Information is collected from the user by means of either speech recognition, or

DTMF input (e.g., “press ’1’ for sales”), and information is presented to the user in the form

of voice, generated either through stored voice files, or through text-to-speech. Dialog servers

can also record speech that they receive. There is an underlying state machine that governs the

operation of the dialog server. The voice prompts played by the dialog server will depend on what

data has been collected so far from that user. We refer to the dialog as the temporally ordered set

of speech generated by the dialog server, and speech sent to the dialog server by the user.

As an example, consider a dialog between a user and a dialog server, for the purposes of

asking the user whether they would like to join a conference call. In the notation below, DS refers

to speech generated by the dialog server, and U refers to speech generated by the user.

DS: Welcome to the conference service.

You have been invited by Joe to

join this conference. Say yes, or press 2,

to join. Say no, or press 1, to decline.

Say help, or press

pound, for the operator.

U: what

DS: I’m sorry, that is not a valid command.

Say yes, or press 2, to

join. Say no, or press 1, to decline.

Say help, or press pound, for the

operator.

U: yes

264

DS: Thank you. Joining the conference now.

Generally speaking, the purpose of a dialog server is to collect some form of information

from a user, and then present that information, in computer understandable format, to an inter-

ested entity (which may be the client itself). In the dialog above, the information collected is

effectively a boolean variable, with a value of 1 if the user joined, and 0 if they asked for the op-

erator. Generalizing this, the information collected by the dialog server is a sequence of variable

values, where the set of variables represents the data to be obtained through the dialog.

In the IN architecture, the Intelligent Peripheral plays a similar role to the dialog server.

From a software component perspective, the dialog server can be represented abstractly

through the following Java interface:

public interface DialogServer {

String [] executeDialog(DialogDefinition dialogToExecute,

MediaConnection connectionToClient);

}

A MediaConnection describes the IP addresses, port numbers, and codecs used for

media flow in both directions. It is passed to the component containing the IP address and port

information for one end of the stream. The component fills in its own IP address and port for

receiving media.

It is important to note that the dialog to execute is an input to the dialog server. As

an alternative, the interface to the dialog server could consist of the set of media primitives to

execute, such as play a tone, play an announcement, and collect a digit. In this case, the dialog

is not passed to the server. Rather, it is interpreted by the client, and the client instructs the

dialog server to execute fine-grained, specific media processing functions. By passing the dialog

definition as input to the component, rather than defining an interface function for every function

specified in the dialog definition, we cleanly separate the user interface (the dialog definition),

from the flow of the application.

From the above interface definition, the problem is clear. How are the the two inputs to

the dialog component (the dialog to execute, and the media connection) passed to the component,

265

and how is the output of the dialog, the set of variable values, passed back to the client which has

invoked the dialog?

Fortunately, standards-based protocols and technologies exist to address all three prob-

lems.

Passing the media connection to the server is simple. As we have mentioned above, the

media connection is established by having the client call the dialog server by sending it a SIP

INVITE. The normal SIP call establishment process will generate a media connection between

the dialog server, and the entity (the user) whose IP address and port where provided in the SDP

in the INVITE. This need not be the client which sends the INVITE to the dialog server (and

won’t be, in most cases.).

To define the dialog, we make use of VoiceXML [254]. VoiceXML is an XML-based

domain specific language that specifies a dialog between a user and a dialog server. It supports

speech recognition, DTMF detection, text-to-speech, recording of speech files, and playing of

prompts from recorded speech files.

The VoiceXML document is passed to the dialog server by embedding an HTTP URL in

the request-URI of the SIP INVITE. This HTTP URL is used by the dialog server to fetch the

VoiceXML script. An example SIP INVITE request line might look like:

INVITE sip:http%3acontroller.com%2fvxml4@dialog.com SIP/2.0

We have URL-encoded the HTTP URL, and placed it into the user portion of the SIP

URL.

A VoiceXML document actually contains a set of dialogs. Each dialog is either a form,

or a menu. Forms are used to collect data from the user, and menus are used to provide choices.

A form has a series of fields, which represent the data values to be collected through the dialog.

Form dialogs also contain control elements that help control the gathering of the form’s fields.

VoiceXML has the notion of a grammar, which defines the set of things the user can say (or

press, using DTMF) when filling out fields of the form. Forms also contain event handlers and

filled items, which are commands that get executed when the form is filled in. The most common

action is to generate an HTTP request (either GET or POST), with the values collected through

266

the form. The use of HTTP is natural here, since the model is that of a user filling out a voice

form, in much the same way they would fill out, and then submit (using HTTP GET or POST),

the values of an HTML form. Just as a normal web server can return another form in response

to a form POST or GET, the HTTP POST or GET generated by the VoiceXML script can return

another VoiceXML script, defining further interactions that are to take place with the user.

The use of HTTP form POST or GET provides the final piece of the interface to the dialog

server. It defines the way by which the output of the dialog server, the data that has been collected,

is passed back to the client.

When the client has completed its interaction with the component, it terminates the con-

nection with a SIP BYE.

As an example, consider the pre-paid calling card application. When the user makes the

call, they are prompted with a greeting, asking them to enter in their PIN number. This PIN

number is the desired output from the dialog server. The client can then verify the PIN, and if its

correct, connect the call to the callee.

The VoiceXML script for this dialog is:

<vxml version="1.0">

<form id="get_pin">

<block> Welcome to prepaid calling.</block>

<!-- The grammar for type="digits" is built in. -->

<field name="pin" type="digits">

<prompt>What is your pin?</prompt>

<filled>

<submit next="http://controller.com/p.asp"

namelist="pin"/>

</filled>

</block>

</form>

</vxml>

The message flow for interacting with the dialog component is shown in Figure 6.5.

267

Client Dialog
Component

INVITE w/ SIP URL containg HTTP URL
http://controller.com/pin.vxml

200 OK

ACK

HTTP GET http://controller.com/pin.vxml

Call established.
Dialog Server fetches script.

200 OK containing VoiceXML script

RTP Interaction

Media
Source

Form filled out, PIN collected.
Perform HTTP POST with data

HTTP POST http://controller.com/p.asp?pin=223

200 OK, no VoiceXML scriptClient done.
Terminate

connection to
component. BYE

200 OK

(4)

(5)

(7)

(8)

(9)

(1)

(2)

(3)

(6)

Figure 6.5: Client interaction with dialog server for PIN collection

In message (1), the controller (which is a process running at controller.com), acting

as a client of the dialog server, sends a SIP INVITE request to the dialog component. The user

portion of the request URI contains the http URL of a dialog to execute. In this case, that HTTP

URL references back to the client. The call is accepted (2,3). The dialog server then takes the

HTTP URL from the INVITE, and fetches it (4). The client receives the HTTP request, and

returns the VoiceXML script to execute (5). The dialog server then interacts with the media

source, which is the entity whose IP address was listed in the SDP in the INVITE. The PIN is

collected using the dialog described above. The dialog server then uses an HTTP GET, using the

URL provided in the submit tag in the VoiceXML script (6). The HTTP request contains the

field value for the variable “pin” as a URL parameter (this is the standard convention for web

forms). This request also goes to the client, at controller.com. The client now determines

that it has completed its interaction with the dialog component, and it hangs up, using a SIP BYE

request (8).

268

In summary, we define a dialog server as a component of our system. The input to this

component is the media session used for the dialog, which is established with a SIP INVITE.

Another input to the component is the dialog itself, represented with a VoiceXML script. The

output of the component is the form data collected through the dialog. It is passed using an

HTTP request from the dialog server back to the client. The dialog component is highly reusable,

since it can work for any dialog that can be expressed in VoiceXML. This includes one-way

dialogs from the dialog server to the user (where the server simply plays some announcement

without collecting data) and one-way dialogs from the user to the dialog server (where the dialog

server waits for the pound key to be pressed). Discovery of the dialog server component is simple,

and is based on the call routing and user discovery capabilities provided by SIP, and described in

Chapter 4.

6.4.2 Mixing Component

The primary function of the mixing component is to take a group of incoming media streams

(usually voice, but the concepts can be applied to video), and perform a “mix-minus” bridging

operation on them, generating a mixed media stream for each incoming media stream. The mixed

stream for input stream i is the sum of all the other streams except i (this is the definition of mix-

minus). We refer to this group of media streams as a mixing context. Traditionally, this group is

known as a conference, but we avoid this term due to its overloaded usage in the literature.

The mixing component allows new streams to be added to the mixing context at any time.

Similarly, a stream can be removed from the mixing context at any time.

These mixing capabilities are standard features on traditional circuit switched and packet

switched conferencing systems. However, we add an additional capability. The mixing context

does not need to be established ahead of time. Mixing contexts are given unique identifiers. If the

client of the component requests that a stream be added to a specific mixing context with a given

identifier, and that identifier does not correspond to an existing mixing context, a new context

is created, and the stream is added to the context. The context remains in existence within the

mixing component so long as there is at least one media stream within the context. When the

last media stream is removed from the context, the context can be destroyed. We refer to this

269

capability as spontaneous mixing contexts.

Traditional conferencing systems do not support spontaneous mixing contexts. Usually,

conferences need to be established ahead of time, and their associated mixing contexts have well

defined start and stop times.

The motivation for adding this capability is to promote component reuse. Policies regard-

ing how long a conference call should last, and how many participants can be present, differ from

application to application. By extracting this from the component, leaving just a pure mixing

function, we are left with a component which can work in any conferencing system with any de-

fined policies. Furthermore, the component can be used for non-conferencing applications. As an

example, the component can be used to support a privacy service. When a user makes a call, their

signaling is routed to a controller providing an anonymizing service. The controller modifies the

addresses in the message to hide the identity of the caller, and forwards the call request to the

callee. It also modifies the SDP in the INVITE and the 200 OK response, so that media from both

caller and callee are sent to the mixing component. Using the third party call control techniques

we describe below, it establishes a spontaneous mixing context containing the two streams. Ef-

fectively, the mixing component plays the role of an RTP translator, by using a mixing context

with two streams. These mixing contexts are not set up ahead of time; they need to be instantly

created when a call is made by a user of the service.

From a software engineering perspective, we can define the interface to this component

very simply:

public Interface MixingComponent {

public void addMediaConnection(MediaConnection aConnection,

MixingContextID id);

public void removeMediaConnection(MediaConnection aConnection,

MixingContextID id);

}

SIP can readily be used to provide this interface. To add a media connection to a mixing

context, the client of the component sends an INVITE to the mixing component. The request

270

URI contains the identifier for the mixing context, encoded in the user portion of the URI. The

mixing component accepts the call, establishing a media stream. As discussed above, the mixing

component creates a mixing context if none exists. The media stream established by the INVITE

is then added to the mixing context. A mix-minus operation is provided across all the media

streams in the mixing context.

Removing a media connection is easily provided through a SIP BYE. The client sends

a BYE for the call leg established with the INVITE. This removes that media stream from the

mixing context.

6.4.3 Text-To-Speech Component

Another example of a session level component is a continuous text-to-speech (TTS) converter.

This kind of service allows a real time text stream ,encapsulated in RTP using the RTP payload

format for text [255]to be received, which is then converted to speech and returned as an audio

stream encoded using a traditional speech codec, such as G.723.1 or G.711.

Text-to-speech functionality can also be providing using a dialog server. Since VoiceXML

provides text-to-speech capability, the client can generate a VoiceXML script with the text in it.

The dialog server will speak the text over the media connection. When a dialog server is used,

however, the text stream to be converted is provided by the client of the component. With a

continuous text-to-speech component, the text stream to be converted is provided in a media

connection, from the user.

It is likely that the text-to-speech conversion process differs significantly depending on

the language. As such, the language needs to be provided as input to the component.

As with the other session level components, we need to be able to initiate the conversion

process by establishing a media connection, and we need to be able to terminate it.

Once more, using Java notation, we can describe this interface as:

public Interface TextToSpeechComponent {

public void beginTranslation(MediaConnection streamToTranslate,

Language lang);

public void stopTranslation(MediaConnection streamToTranslate);

271

}

As with the other session level components, the mapping to SIP is simple. The translation

process is initiated with a SIP INVITE, which provides the media connection. The request URI

identifies the text-to-speech component, and also conveys the language. We adopt the convention

sip:server specific name-language tag@domain, where the language tags are se-

lected from the set defined in RFC 1766 [256]. For example, the URL for contacting a component

that performs text-to-speech in English might be sip:ttscomponent-en@foo.com.

One of the unfortunate limitations of SDP is that it is not currently possible for a single

media stream to be one media type (such as audio, video, or text) in one direction, and a different

media type in the other direction. Text over RTP is considered a text media type. As a result, two

media streams are needed for this service. One is a unidirectional audio stream from the user to

the component, and the other is a unidirectional text stream from the component back to the user.

First, the client INVITEs the server. The SDP indicates two media streams. One stream

is of type audio. It contains the set of audio codecs acceptable to the client. The stream is

marked as receive-only. The other stream is of type text. It contains a single codec, which is a

dynamic payload number bound to text/t140. The stream is marked as send-only. The SIP 200

OK response from the TTS server that accepts the call has SDP with a two media lines, one of type

audio, and one of type text, in the same order the streams appeared in the INVITE, as mandated

by RFC2543. The audio stream contains a subset of the codecs listed in the audio stream in the

INVITE. The audio stream is marked as send-only. The text stream contains a single codec, which

is a dynamic payload type number bound to text. The stream is marked as receive-only.

The client then ACKs the request. The TTS server converts all text received on the in-

coming text stream to speech, and return the resulting speech on the outgoing audio stream.

6.4.4 Additional Session Components

A variety of other session components can be defined. One possible component is a translation

component. It translates speech from one language to another language. It works almost identi-

cally to the text-to-speech component. An INVITE is used to establish a media stream with the

server. The request URI indicates that a translation service is desired, and it carries the language

272

tags of the input and output languages. Like all of the other session components, the translation

component is terminated by a BYE.

Another session component is a voice mail service. Voicemail service can be broken

down into a number of sub-components, each of which represents a particular type of interaction

with the voicemail service. The interactions can be broken into two separate categories - message

drop, where the caller leaves a message, and message retrieval, where the user retrieves their

messages. Within each category, there are several different interactions that might take place

with a caller. For example, a message might be left because the caller attempt to contact a user,

and the user was busy, resulting in a connection to the voicemail system. The prompts played by

the system for a call-forward-busy drop might be different than for other message drop cases.

Campbell and Sparks [257] detail the SIP interfaces to a voicemail system component.

They fit within the general framework of using the Request-URI as a service identifier, which we

have defined here.

It is useful to note that the voicemail component can be implemented using a series of

dialog servers assembled together in a particular fashion. In this case, the voicemail interface is a

facade pattern, hiding a more complex conglomeration of components. This facilitates reusability,

as we have discussed.

Another session level component is a PSTN gateway component. The service provided

by the gateway is to take calls received by the client, and connect those calls to a number in the

telephone network. The number to connect to is provided in the user portion of the request URI

of the SIP INVITE. To terminate the call, either the client, or the gateway, sends a SIP BYE. This

basic interface is exactly the one provided by existing Internet telephony gateways, as described

both in the literature [258, 259, 105, 260, 261], and in current commercially available products.

Viewing these devices as reusable components, in a CBD design paradigm, is helpful towards

understanding how they fit into our overall architecture.

6.4.5 Presence Component

We defined the presence service in Section 6.2 as a system that allowed entities to subscribe to,

and be notified of, changes in the status of other users. Presence systems have been described

273

extensively in the literature. Examples include the Montage system [262] and the MIT Zephyr

system [92].

Presence is often associated with instant messaging, which allows users to send electronic

notes to each other. Unlike email, where messages are stored on a server, and then retrieved

by the client at a later time, instant messages are displayed immediately on the screen of the

recipient without being stored in a server. Some systems do store instant messages when the

recipient is not actually online, and others do not. Because of its focus on immediate delivery, as

opposed to storage and message management, instant messaging is only useful when the recipient

is logged in. This is what instant messaging is often provided in conjunction with presence

(Zephyr provides both, for example).

However, none of the systems documented in the literature operate well in a wide area

network. They lacked adequate addressing, routing, and security mechanisms.

In 1998, the IETF began consideration on standardizing protocols for presence services

across wide area networks. The generated a requirements document, RFC 2779 [263], and a

framework and model document [91]. We proposed the usage of SIP to support presence [264]

and instant messaging [265].

In our proposal, a presence server is a network entity that receives subscription requests

(in the form of a SIP SUBSCRIBE message) for a particular presentity served by that server. A

presentity, defined in RFC 2778 [91] is a presence entity, which is the entity that publishes the

presence information (available, not available, or any other status) to the system on behalf of a

user. When the status of the presentity changes, the presence server generates notifications (in the

form of SIP NOTIFY requests), conveying the new status of the presentity.

A basic presence exchange using SIP is depicted in Figure 6.6. The client, which can be

any entity interested in receiving presence information, constructs a SIP SUBSCRIBE request.

The Request-URI of this request identifies the presentity. In Figure 6.6, the presentity is iden-

tified as sip:presentity@server.com. This request is routed through a SIP network of

proxy servers (not shown), arriving at the presence server (1). If the subscription is allowed, and

is accepted by the server, a 200 OK response is sent (2). At some point later, the status of the

presentity changes. This change can be known to the presence server in many ways. One mech-

274

Presentity’s state
changes

SUBSCRIBE sip:presentity@server.com

200 OK

NOTIFY sip:subscriber@clientdomain.com

200 OK

SUBSCRIBE sip:presentity@server.com

200 OK

(1)

(2)

(3)

(4)

(5)

(6)

Client Presence
Server

Figure 6.6: Message exchange for basic presence service

anism described in our proposal [264] is through SIP registrations, which effectively convey the

status of the user. As a result, presence servers are ideally co-located with registrars.

As a result of this change in status, the presence server generates a SIP NOTIFY request

(3). This request is addressed to the subscriber. The body of the request contains a presence

document, describing the current status of the presentity. When the NOTIFY is received, the

subscriber sends a 200 OK response (4), confirming its arrival. In our proposal, subscriptions are

soft state, and must be refreshed. This refresh, which works identically to the original subscription

exchange, is performed with messages (5) and (6).

In traditional applications of presence, such as Montage, it is the end user software that

generates the subscriptions which access presence services, in order to learn the status of another

user for rendering on a graphical interface. In our service architecture, we model the presence

server as a component, which provides a generic presence service that can be accessed by other

components, such as the controller, to facilitate the delivery of complex applications. The in-

terface to the component is through the SIP SUBSCRIBE and NOTIFY requests, and their re-

sponses, as specified by Rosenberg [264]. The service provided by the component is also well

275

defined, and specified by Rosenberg [264]. Most importantly, the presence component is highly

reusable. It lacks any application specific interfaces or functional semantics, and can therefore be

used as a key component of any application that requires presence information.

6.4.6 Additional Components

The ACA architecture, as shown in Figure 6.4, also shows a messaging component and a database

(DB) component.

The messaging component supports instant messaging, as defined in RFC 2778 [91] and

discussed in Section 6.4.5. The component provides a well-defined, and simple service. It takes

instant messages it receives, and delivers them to the desired recipient. The interface to this

component is defined in our instant messaging specification [265]. The client formulates a SIP

MESSAGE request, and sends it to the messaging server. The server delivers the message to

the recipient identified by the Request-URI in the SIP request. If the message is successfully

delivered, a 200 OK response is provided. The call flow for this interface is shown in Figure 6.7.

In SIP terms, the messaging server is nothing more than a SIP proxy server, which routes

the message to the recipient identified in the request URI.

MESSAGE sip:recipient@server.com

200 OK

Client Messaging

Component

Figure 6.7: Call flow for interface to message component

Another component is a database. To be a reusable component, the database must be

276

application independent. This means that the schema for the data storage must be general purpose

and usable for any application. The only realistic schema that can fit such a need is a simple

name-value mapping service. Clients can store any object, specifying a name when the object

is placed into the database. It can then be retrieved later on by fetching it with the same name.

Many existing database protocols can be used for such an interface, including the Lightweight

Directory Access Protocol (LDAP) [191].

6.4.7 Controller

In our architecture, the controller is responsible for “assembling” the various other components

together, as needed, to execute the application. This means that it is responsible for determining

the ordering of components to invoke based on the requirements of the application. As an ex-

ample, the pre-paid calling card application begins with a call that arrives at the controller. The

controller then invokes the dialog component, and connects the user to it in order to obtain the PIN

number. Once done, the controller invokes a database component, to validate the PIN number.

Assuming the PIN is validated, the controller next invokes the gateway component, connecting

the user to the PSTN.

The controller is analagous to the feature router in DFC [244], and to the GUI tools

used to assemble JavaBeans. In our architecture, the controller is the one and only place where

application-specific code resides.

Since the controller is a component itself, it has a well defined input and definition of the

service it provides. The controller is contacted by the end user who wishes to use the application.

This contact can occur in one of two ways. In the first approach, the end user initiates a SIP

call, which is routed to the controller. The reception of a call is what triggers the application. As

with other components we have defined here, the user portion of the Request-URI of the INVITE

identifies the application.

In SIP terms, the controller can be a proxy or User Agent Server (UAS) when receiving

a call to initiate an application. In the processing of that call, it can additionally act as a UAC

(making it a B2BUA).

Another way to initiate a service is using HTTP. A user can click on a web page, initiating

277

some kind of application. In this case, the HTTP request is routed to the controller, and the request

URI of the HTTP request defines the application to execute. Effectively, the controller is an HTTP

server.

The application is constructed by invoking the services of the other components. These

components are invoked in some sequence, which is dependent on the application to be delivered,

and the outputs of the components invoked in the processing of the application.

Session components are invoked by sending them a SIP INVITE to establish a session

with the component. The media stream that connects to the session component is not generated

by the controller. Rather, the controller uses third party call control (discussed below), to connect

media streams from users or other components to the session component being invoked. Once

the controller is finished with the session component, it disconnects with a BYE request. In the

case of a dialog component, there may be an HTTP request passed from the component to the

controller, informing it of data collected from the dialog. The interaction between a controller

and a session component is shown in Figure 6.8.

Controller Session
Component

SIP INVITE sip:component

RTP Stream
User
or

Component
HTTP POST form data

HTTP 200 OK

SIP 200 OK

SIP ACK

SIP BYE

SIP 200 OK

User information
collected

Controller
finished with
component

Figure 6.8: Interface between the controller and session components

278

6.4.8 Third Party Call Control

The means for invoking the services provided by the components in our architecture are detailed

above. However, one piece is missing. Although the controller will be the client of most of those

services, it is not the one generating the media stream that interfaces to the session level resources.

The media streams used as input to the session components will ususally come from the end users

in the application, or from other session level components. Therefore, another required capability

is for the controller to connect the media streams from end users and session components, to

other end users and session components. This capability is known as third party call control.

Third party call control allows for signaling relationships to exist between the user and controller,

and the controller and component, but for the media streams to flow directly between the user and

component. This is shown in Figure 6.9. We have developed usage scenarios for SIP that allow

the controller to invoke third party call control services (3pcc) [121].

Controller

User
Session

Component

RTP

SIP
SIP

Figure 6.9: Signaling and media relationships in third party call control

There are two usage cases for SIP third party call control. Both have advantages and

disadvantages, as we discuss below.

279

6.4.8.1 Basic Flow

The controller first sends an INVITE to the first entity, A, which is to represent one side of

the media connection. The entity may be an end user, but it could also be any of the session

components described above. This is a standard INVITE, but it contains no SDP. As we discussed

in Chapter 4, this causes A to make the initial offer of SDP for the call in its 200 OK. When this

200 OK arrives, the controller does not yet send an ACK. It generates a second INVITE. This

INVITE is addressed to the second entity, B, to be connected in the call. This INVITE contains

the SDP as received from the 200 OK from A. When the 200 OK to this second INVITE arrives,

the controller ACKs it, takes the SDP, and includes that in the ACK for the first call. A flow

diagram for this mechanism is given in Figure 6.10.

INVITE no SDP

A Controller B

RTP

200 OK SDP A

200 SDP B
ACK SDP B

ACK

(1)

(2)
(3)

(5)
(4)

(6)

INVITE From: A To: B SDP A

Figure 6.10: 3pcc basic flow

This flow is simple, requires no manipulation of the SDP by the controller, and works for

any media types supported by both endpoints. However, it has a serious timeout problem. Entity

B may not answer the call immediately. The result is that the controller cannot send the ACK to

A. This causes A to retransmit the 200 OK response periodically. In fact, if B does not answer

280

within 32 seconds, the call with A times out [89].

6.4.8.2 Advanced Flow

A more complex flow, which does not suffer the timeout problem described above, is shown in

Figure 6.11.

INVITE no SDP

200 OK SDP A1

ACK held SDP

INVITE no SDP

200 SDP A2
ACK SDP A2’

ACK

RTP

A Controller B

200 SDP B1

INV SDP B1’

(1)

(3)

(4)

(8)

(2)

(5)

(6)

(7)

(9)

Figure 6.11: 3pcc advanced flow

First, the controller sends an INVITE to the first entity, A, without any SDP. Entity A

responds with its SDP, A1, in a 200 OK, which is immediately ACKed with an on-hold SDP

generated by the controller (an on-hold SDP has the IP address in the SDP set to 0.0.0.0, which

is defined by SIP as media-on-hold).

Next, the controller sends an INVITE to the second entity, B, also without SDP. The SDP

in the 200 OK, SDP B1, is used to create a re-INVITE to entity A. That re-INVITE is based on

SDP B1, but may need to be reorganized to match up media lines (recall that the media lines in the

answer to an offered SDP must align) . We therefore call that SDP B1’. Since this is a re-INVITE,

it should complete quickly in the general case. That is important, since entity B is retransmitting

281

their 200 OK, waiting for an ACK. The SDP in the 200 OK from A, SDP A2 (which may be

different than A1), is then passed to entity B in the ACK. It may also need reorganization to

match up media lines.

This flow has many benefits. First, it will usually operate without any spurious retrans-

missions or timeouts (although this may still happen if a re-INVITE is not answered quickly).

Secondly, it does not require the controller to guess the media that will be used by the partici-

pants.

There are some drawbacks. The controller does need to perform SDP manipulations.

Specifically, it must take some SDP, and generate another SDP which has the same media com-

position, but is on hold. Secondly, it may need to reorder an SDP message X, so that its media

lines match up with those in some other SDP message, Y. Finally, the flow is far more complicated

than the simple and elegant flow in Figure 6.10.

As a result of these drawbacks, it is our recommendation that the basic flow, shown in

Figure 6.10 be used if, and only if, the controller knows that entity B is actually an automata

that will answer the call immediately. This is the case for all of the session level components

described above. Since we expect a great deal of third party call control to be between end users

and session components, this simpler flow can be used frequently.

For calls to unknown entities, or to entities known to represent people, it is recommended

that the flow in Figure 6.11 be used for third party call control.

6.4.8.3 Continued Processing of Third Party Calls

Once the calls are established, both entities are in a point-to-point SIP call with the controller.

However, they are exchanging media directly with each other, rather than with the controller. The

result is that the controller has set up a call between both entities.

Since the controller is still a central point for signaling, it now has complete control over

the call. If it receives a BYE from one of the participants, it can create a new BYE and hang up

with the other entity. This is shown in Figure 6.12.

As an alternative, when the controller receives a BYE from A, it can generate a new

INVITE to a third entity, C, and connect B to that entity instead. A call flow for this is shown in

282

(1) SIP BYE

(2) SIP BYE
(3) SIP 200 OK

(4) SIP 200 OK

A Controller B

Figure 6.12: Hanging up with 3pcc

Figure 6.13, assuming the case where C represents an end user, not a session level component.

Note that it is simply messages 4 through 9 of the basic call flow of Figure 6.11.

(3) SIP 200 OK

A Controller B C

(1) SIP BYE

(9) RTP

(2) SIP INVITE no SDP

(4) SIP 200 OK SDP C1

(5) SIP INVITE SDP C1’

(6) SIP 200 OK SDP B2

(7) SIP ACK

(8) SIP ACK SDP B2’

Figure 6.13: Alternative to hangup

From here, new entities can be added, removed, transferred, and so on, as the controller

sees fit.

The general idea behind the mechanism is that there is a point-to-point SIP relationship

between each entity and the controller. However, by passing the SDP it receives from one par-

ticipant to another, it can causes users to actually communicate with each other rather than the

controller.

283

6.4.8.4 End User Initiates Call

The call flow in Section 6.4.8.1 assumes that the controller is the entity that initiates calls to the

entities that need to be connected. However, a more common case is that the end user initiates a

call to the controller, and the controller then needs to connect this call to another entity, and have

the two exchange media. We have also developed call flows for this usage scenario, shown in

Figure 6.14.

A Controller B

INVITE B SDP A1

180 Ringing
INVITE B SDP A1

200 OK SDP B1

ACK
200 OK SDP B1

ACK

RTP

Figure 6.14: 3pcc where the end user initiates

In this call flow, the controller looks deceptively like a SIP proxy, but it is not. The

controller acts as a UAS for the INVITE received by A, and then as a UAC when it initiates a

call to B. It is this fact which allows the controller to generate its own ringing messages, or to

generate an ACK for a 200 OK, both of which are done in this call flow.

Once set up, the controller is exactly in the same state as if it had initiated the call as

described in Section 6.4.8.1. The controller can hang up to one side, hang up to both sides,

reconnect the users to media servers, and so on.

284

6.4.9 Obtaining Data from End Users

An important component of any application is how information is collected from the users of the

application during its execution. Since the controller is responsible for the overall execution of

the application, it is the element responsible for processing user input.

As an example, a pre-paid calling card application requires the user to interact with the

application. They need to provide the PIN number for the account in order to make the call.

Of course, some applications do not require input to be provided during the execution of the

application. An example is a call-forward on no-answer service. This service requires that the

user provide input, which is the forwarding number, but it is provided ahead of time, as part of

the configuration of the application itself.

Generally, the user can provide input to the system in two different approaches, which are

stimulus signaling and functional signaling. The difference is whether the end user equipment

(software or hardware) needs to understand the semantics of the input provided by the end user. In

stimulus signaling, the client equipment has no semantic understanding of the input. In functional

signaling, it does.

Consider the example of a transfer feature. In this feature, two end users, A and B, are

talking. User A wishes to transfer B to some other user, C. One way to do this is for user A to

depress the hookflash on their phone. This information is transmitted to the switch, which returns

a dialtone to the phone. The user then dials the number to transfer the call to. This information

is passed to the switch as well, just as dialed digits normally are. The switch then transfers the

call. In this model, the client equipment, the phone, was not aware that the transfer feature was

being invoked. The service can be added to existing systems by upgrading the switches, and then

informing the user about how to use the service. The client equipment does not have to change.

When functional signaling is used, the transfer feature might be invoked differently.

Rather then depressing the hookflash, the user presses the transfer button, and then enters in

the number to transfer to. The phone sends a specific protocol message to the switch, requesting

the transfer and providing the number to transfer to. In this case, the switch, the user, and the

phone all have an understanding of the semantics of the service being invoked.

Stimulus signaling can be provided through many different mechanisms on phones. One

285

is depressing the hookflash (which is only possible on certain phones). More commonly, users

press the numbers on the keypad, generating DTMF. Speech recognition is another way to provide

stimulus signaling.

It is worthwhile to note that the web usually operates under the model of stimulus signal-

ing. The client equipment, the web browser, is not aware of the semantics of the services invoked

by the end user. The end user knows how to use the service (as a result of the user interface

provided by the server, through the HTML content downloaded into the browser), and the server

knows what service is being requested when a page is fetched or a form is posted. The browser

is not aware of the semantics of the application. This is not true for web applications based on

the Simple Object Access Protocol (SOAP) [266], which uses HTTP and XML to communicate

between automata.

There are strengths and weaknesses to each method. Stimulus signaling only works effec-

tively when there are humans driving the application on the client side. This can be very limiting.

Without the presence of downloadable user interfaces (as is the case for the web), the user inter-

faces for stimulus signaling need to be known by users a-priori, and they are often confusing and

difficult to understand. Error conditions are difficult to handle. However, stimulus signaling al-

lows for rapid introduction of new applications and features, since a much smaller set of elements

need to be modified to support the application.

Functional signaling is faster, and can be driven by automata, not just human beings. Ap-

plications and features provided by functional signaling can have rich user interfaces without the

need to download them. However, functional signaling requires that every feature or application

have a protocol defined to support it, and then have this protocol deployed in client devices and

in the servers.

Both methods have a place in an Internet telephony application architecture. It is our

belief that functional signaling is a requirement for the most common features and applications,

so that they can be driven by automata (call establishment, call termination, hold, transfer). How-

ever, deployment of new applications is hindered by functional signaling. Complex and special-

ized applications, such as the ones discussed in the introduction, are not likely to have protocols

defined just to support them. For these kinds of applications, stimulus signaling is more appro-

286

priate.

Our architecture supports both forms of signaling for driving applications. In the next two

subsections, we examine how this is done.

6.4.9.1 Stimulus Signaling

The primary role of the dialog component is to collect stimulus input from users, in order to drive

applications. The dialog component can support input from users either through DTMF or speech

recognition. To collect stimulus input from the user, the controller uses third party call control

to connect the user to the dialog component. The dialog server is passed a VoiceXML script that

defines the desired data to be collected from the user, and the voice form used to collect it. The

data collected is passed to the controller using HTTP.

Another form of stimulus signaling is through web forms. Collection of stimulus input

through web forms is also supported by our architecture. When a user makes a call to initiate

an application, the call is received by the controller. The controller can return a provisional or

final response to the caller, containing a Call-Info header. This header, specified in the updated

SIP specification [267], contains an HTTP URL that points to content associated with the call.

When returned in a response, it causes the caller to fetch the URL contained in the header. The

controller can also place this header in an INVITE it creates or forwards, so that a called user also

fetches a URL.

Once this initial HTTP connection is made between the users in the call, and the con-

troller, the controller can use it to collect data directly from the users. A new web page can be

“pushed” by the controller, to the users, by placing the Call-Info header in an INFO request,

generated at any time during the lifetime of a call leg between the end users and the controller.

Pushed web pages can contain HTML forms for gathering stimulus, as needed. This case is

shown in Figure 6.15

The end user initiates a call using an INVITE (1) that results in the invocation of an

application. The controller responds with a 200 OK (2) and the user ACKs it (3). At some point

during the call, the controller wishes to obtain input from the user through a web form. The

controller can determine that the caller’s access device is web capable based on the presence of

287

INVITE

200 OK

ACK

INFO, Call−Info: http://controller.com/foo

200 OK

HTTP GET http://controller.com/foo

200 OK w/ form

HTTP POST form

200 OK

(6)

(9)

(4)

(3)

(2)

(1)

(5)

(7)

(8)

User Controller

Figure 6.15: Using HTTP as a stimulus protocol

certain headers in theINVITE (specifically, theAccept-Contact andAccept headers, which can

indicate support for HTTP URLs and HTML, respectively). Assuming the user’s device is web

enabled, the controller sends it anINFO request (4). This request contains aCall-Info header,

indicating a URL to fetch. In this case, the URL (http://controller.com/foo) points

back to the controller. After accepting theINFO request (5), the user fetches the URL (6). The

controller returns a form (7). The user fills out the form, and POSTs it (8). The response (9) can

contain another form, if needed.

288

6.4.9.2 Functional Signaling

We propose two distinct classes of functional signaling for services. The first are primitives for

media stream manipulation, and the second are primitives for call routing. We chose these two as

they are the fundamental services provided by SIP.

The basic primitives needed for media stream manipulation are the ability to add a stream

between parties or in a multicast group, remove a stream, modify the codec or other characteristics

of a stream, modify the transport destination of a stream, and to put a stream on hold. Fortunately,

all of these are supported within the baseline SIP specification [89].

The second set of primitives are call routing services. SIP is primarily responsible for call

routing. However, the baseline SIP model is that each proxy makes an independent decision on

call routing based on its own local policy. There is no provision for other entities involved, like

the caller or callee, to guide call routing. Allowing callees to provide input on call routing is the

subject of the Call Processing Language [144, 141], and we do not discuss it further. Allowing the

caller to have input to the call routing process is fundamentally a functional signaling capability.

To support it, we have developed an extension to SIP forcaller preferences and callee capabilities

[268].

The extension defines a set of additional parameters to theContact header. These param-

eters specify attributes that define the characteristics of the UA at the address in the header. For

example, there is a mobility parameter which indicates whether the UA is fixed or mobile. When

a UA registers, it places these parameters in theContact headers to characterize the URIs it is

registering. This allows the proxy to have information about the contact addresses for a user.

TheINVITE message, and its response, also containContact headers used to route subse-

quent messaging. This extension allows these headers to contain extension parameters to provide

additional information about the type of user agent being used. For example, by including the

feature parameter with value “voicemail” in the 200 OK to anINVITE, the UAS can indicate to

the UAC that it is a voicemail server. This information is useful for user interfaces, as well as

automated call handling.

When a caller sends anINVITE, it can optionally include new headers which request

certain handling at a proxy. These preferences fall into two categories. The first category, carried

289

in theRequest-Disposition header, describe desired server behavior. This includes whether the

caller wishes the server to proxy or redirect, and whether sequential or parallel search is desired.

These preferences can be applied at every proxy or redirect server on the call signaling path.

The second category of preferences are carried in both theAccept-Contact andReject-

Contact headers. These preferences contain rules that describe the set of desired URIs that the

caller would like the server to proxy or redirect to. These rules are matched against theContact

headers sent in a registration (or through some other configuration means). If a rule in aReject-

Contact header matches aContact header from the registration, that address is not used. If a rule

in a Accept-Contact header matches aContact header, theq values in the rule are combined

with the q values in theContact header, resulting in a “merged”q value. This mergedq value

is then used by the proxy to determine the ordering of addresses to use. Note that this second

category of preferences can only be applied at a proxy which accesses a registration database.

Details of the syntax and the processing algorithm used at servers are described by Rosen-

berg [268]. We do not repeat them here for brevity’s sake.

Clearly, protocols for signaling additional features are needed. Much work has been done

on defining protocols for conference controls [269, 270, 271, 272]. The ITU has standardized a

conference control protocol as part of its H.323 series of recommendations [97]. However, no

standards-based conference control protocol has been defined for SIP systems.

Additional functional signaling can be done through theREFER method, defined by

Sparks et al. [273]. It is used to request the UAS to initiate a request to some other entity. Its

primary application is call transfer, but other uses exist. Earlier work has proposed the addition

of anAlso header that could be included in a SIP request [109]. This header would instruct the

recipient of the request to place a call to the URL included in the header. However, this approach

was discarded because it combined two separate actions (the request itself and the new call) into

single message.

6.5 Target Services

In this section, we describe how our architecture supports the implementation of the target appli-

cations defined in Section 6.2.

290

6.5.1 Pre-Paid Calling Card

The service is readily implemented in our architecture. It requires two session components, a

gateway and a dialog server. The basic workflow is straightforward. The first operation is the

connection of the caller to the controller. The next is the interaction of the user with a dialog

server, so that the controller can obtain the PIN. The next is the validation of the PIN with a

database. The next step is to connect the caller with the gateway (assuming the PIN is valid), and

to set a timer to expire when time runs out on the card. The final step is to disconnect the user

from the gateway when the timer fires. The call flow is shown in Figure 6.16.

(12) SIP 200 OK

(17) SIP BYE

(18) SIP 200 OK

(13) SIP ACK

(8) SIP BYE

(9) SIP 200 OK

(10) SIP INVITE

(11) SIP 200 OK

(14) SIP ACK

(15) SIP BYE

(16) SIP 200 OK

(6) HTTP POST pin

(7) HTTP 200 OKl

Caller

(1) SIP INVITE
(2) SIP INVITE

(3) SIP 200 OK

(5) SIP 183
(4) SIP ACK

Controller Component
Dialog

Component
Gateway

RTP

PIN collected

Disconnect
Dialog
Component

Connect
User to
GW

Figure 6.16: Pre-Paid calling card service

The caller begins by constructing a SIPINVITE request addressed to sip:4085551212@prepaid.com,

where 4085551212 is the phone number that the caller would like to connect to. ThisINVITE

is sent to the controller (1), which is the server handling SIP requests forprepaid.com. The

controller recognizes that this is a pre-paid customer. So, it first needs to connect the caller to a

291

dialog component to collect the user’s PIN. To do this, it uses third party call control, and sends

an INVITE (2) to the dialog component. ThisINVITE contains the SDP fromINVITE (1). The

dialog component accepts the call (3), and after the response is acknowledged (4), the SDP is re-

turned to the caller in a provisional 183 response (5). This sets up an “early” media stream from

the caller to the dialog component. The dialog component fetches the PIN collection VoiceXML

script from the controller (not shown). The media stream is now connected between the caller,

and the dialog component. Upon collecting the user’s PIN, the dialog component sends an HTTP

POST to the controller, containing the PIN collected from the user (6). The controller then ter-

minates the call with the dialog component (8,9). The controller then authorizes the user based

on the PIN, and determines the number of minutes left. Typically this is done through access to

backend database and authorization systems (not shown). Assuming there are minutes remaining,

theINVITE is proxied (10) to the destination user (likely a gateway). The call is accepted (11,12),

and acknowledged (13,14).

Some time later, the remaining time on the card expires. The application server therefore

decides to terminate the call forcibly. To do this, it once again uses third party call control, and

sends aBYE in both directions, hanging up the call (15-18).

6.5.2 Click-to-dial

We want to enable this service in such a way that its easy for the commerce site to deploy without

doing any real extra work. This means that the actual click-to-dial service is run by a third party

provider. The provider tells the commerce site to include a URL in the page whenever they

want a call to the customer service department to be made. The commerce site is responsible for

dynamically generating the URL with form parameters containing information on the customer.

In particular, it must contain their phone number. For example, the commerce site would be

required to embed the following URL in a web page when user Joe is browsing:

<a

href=http://controller.c2d.com?

username=joe&phone=5551212&site=amazon">

Call customer rep

292

INVITE no SDP

200 OK SDP A1

ACK held SDP

INVITE no SDP

200 SDP A2
ACK SDP A2’

ACK

RTP

Controller

HTTP GET

HTTP 200 OK

(1)

(2)

(3)

(7)

(8)

(9)
(10)

(11)

Customer Customer
Service
Rep

(4)

(5)

(6)

200 SDP B1

INV SDP B1’

Figure 6.17: Click-to-dial service

A call flow is shown in Figure 6.17. The call flow is nearly identical to that of Figure

6.11. The difference is that the third party controls are executed as a result of the customer

clicking on a link. When the user clicks on this hyperlink, it sends a request to the controller

providing the click-to-dial service (1). This initiates the application. The code in the controller

extracts user’s phone number from the HTTP URL. The URL also contains an identification of the

commerce site. The controller uses this to determine the phone number of the customer service

representative. This can be an Internet telephony terminal, or a traditional PSTN number. The

controller returns a web page in the response indicating that the application was invoked (2).

At this point in execution of the service, the controller has the phone numbers or SIP

URLs of the two participants (the end user and the customer service representative). The con-

troller determines a gateway to use for connecting calls to the phone numbers (using the mecha-

nisms we describe in Chapter 5). It then begins the third-party call control process based on the

advanced flow of Section 6.4.8.2. This starts with anINVITE (3), containing no SDP, targeted at

the customer service representative (or the gateway used to connect the to representative). The

293

200 OK response accepting the call (4) contains the offered SDP, A1. The controller responds

with an SDP answer in the ACK (5), indicating that it is on hold. It then contacts the customer

using anINVITE with no SDP (6). The end user offers their SDP, B1, in the 200 OK used to

accept the call (7). The controller then begins the re-INVITE with the customer service represen-

tative. TheINVITE request sent to the representative contains a re-ordered version of SDP B1

(8). The 200 OK response (9) contains the answer from the representative, A2. This response

is acknowledged (11), and at the same time, a reordered version is passed as the answer in the

ACK to the customer (10). Media know flows between the customer and the customer service

representative.

6.5.3 Auto-conference

The auto-conference application is described in Section 6.2. The application is initiated by an

HTTP request containing the list of participants for the conference, and their presence addresses

(these are the SIP URLs to which aSUBSCRIBE request is sent) and phone numbers (or SIP

URLs for Internet telephony endpoints). This request is delivered to the controller. The controller

begins by accessing the presence component, whose interface is described in Section 6.4.5. This

allows the controller to subscribe to the status of the participants in the conference. The presence

component will begin generating notifications to the controller. When the controller determines

that all are online, it accesses the instant messaging component. It requests that the component

deliver an instant message to each participant. Each instant message contains an html document

that queries the participant for their willingness to join the conference. When the participants

click on either “yes” or “no”, an HTTP request is sent to the controller. The Request URI of

the request informs the controller about whether that participant is willing or not to join. Once

all participants have responded, the controller initiates the conference call. To do that, it uses

third party call control, in conjunction with a mixing component. One by one, it connects each

participant to the mixing component, and uses the same Request-URI for each call leg initiated

to the mixing component. This causes each participant to be placed into the same mixing context

within the mixing component. At this point, the application is complete.

The detailed call flows for this application are shown in Figures 6.18 and 6.19, which we

294

have split apart for readability.

(9) SIP REGISTER

(10) SIP 200 OK

 B

(2) 200 OK

(1) HTTP POST

(8) SIP 200 OK

(7) SIP REGISTER

A

(24) HTTP 200 OK

Controller BComponent
Messaging

Component
Presence

(4) SIP 200 OK

(6) SIP 200 OK

(12) SIP 200 OK

(14) SIP 200 OK

(17) SIP 200 OK
(19) SIP MESAGE

(18) SIP 200 OK

(21) SIP 200 OK

(22) SIP 200 OK

(25) HTTP GET

(26) HTTP 200 OK

 A

(11) SIP NOTIFY status A

(13) SIP NOTIFY status B

(15) SIP MESSAGE B
(16) SIP MESSAGE B

A

(20) SIP MESSAGE A

(23) HTTP GET a−yes
b−yes

(3) SIP SUBSCRIBE A

(5) SIP SUBSCRIBE B

Figure 6.18: First half of auto-conference service

The first half of the call flow for this service is shown in Figure 6.18. We have simplified

the flow by assuming that there are only two users in the conference call. First, the user who

wishes to schedule the call (in this case, user A, who also wishes to be a participant), fills out a

web form and submits it (1). This HTTP request is delivered to the controller, which returns an

HTTP 200 OK response containing an HTML document (2). This document indicates that the

application is in progress. The controller then accesses the presence component. It first sends a

SUBSCRIBE request to subscribe to the status of A (3), and then another to SUBSCRIBE to

the status of B (5). Both requests are accepted (4,6). In this example, the presence component

knows the status of A and B because it is co-located with a registrar.

Some time later, user A logs into their computer, and starts their SIP phone application.

This generates a SIP REGISTER message to be sent to its registrar (7), indicating that user A

is now available. The registration is accepted (8). The presence component proceeds to deliver

notifications about the change in status to the subscribers. In this case, it generates a NOTIFY

request to the controller (11), containing the status of user A. This notification is accepted (12).

295

Similarly, user B logs in, generating a REGISTER request (9), which is accepted (10). A noti-

fication is sent to the controller (13), and it is accepted (14). At this point in the progress of the

application, both conference participants are now available.

The next step is to communicate with the message component, to deliver instant messages

to each participant. It sends an instant message to B (15) and A (19). The messaging compo-

nent delivers the messages, and their acceptance responses (16,17,18,20,21,22). As discussed

above, each message contains an HTML document that asks the user to click one link to join the

conference, and another to decline.

The HTML document delivered to A might look like:

<html>

<body>

User A has asked for a conference call to be set up when user A and

user B are both available. Both are available right now. If you

would like to join the call, click

here, otherwise, to

decline, click

here.

</body>

</html>

The URLs for the yes and no responses convey the identity of the respondent (A or B) to

the controller, along with the answer itself. Both are conveyed as URL parameters, using standard

HTTP form conventions. These requests represent stimulus signaling, using HTTP, as discussed

in Section 6.4.9.1.

Let us assume both users accept. The result is going to be an HTTP GET request from

both (23,25), which is accepted. The responses (24,26) might contain an HTML document con-

firming initiation of the call.

296

200 OK SDP A1

INVITE context7f SDP A1

200 OK SDP M1

ACK SDP M1

ACK

INVITE UserA no SDP

Controller Component
Mixing

User A User B

ACK

INVITE UserB no SDP

200 OK SDP B1

INVITE context7f SDP B1

200 OK SDP M2

ACK SDP M2

(1)

(4)

(7)

(8)

(11)

(12)

(2)

(3)

(6)

(5)

(9)

(10)

Figure 6.19: Call establishment phase of auto-conference

At this point, the controller must set up the conference call. It does so by using third

party call control mechanisms between the users and the mixing component. This process is

shown in Figure 6.19. The call flow is basically two invocations of the basic third party call

control primitive of Figure 6.10. The first invocation connects user A to the mixing component,

in context 7f. The second invocation connects user B to the mixing component, also in context

7f. Both users are now in a conference call.

The example is a bit contrived, since in the case of two users, the controller can directly

connect them, rather than using a mixing component. However, we use the mixing component to

illustrate what it would look like if there were more than two users.

297

6.5.4 Web Form Entry for Call Center

The “Web form entry for call center” application is described in Section 6.2. This application is

done readily without the services of any components beyond the controller. Like auto-conference,

it uses HTTP-based stimulus signaling between the user and the controller.

Caller

(1) SIP INVITE

(2) SIP 183

Customer
Service Rep

(4) HTTP 200 OK

(6) HTTP 200 OK
(7) SIP INVITE

(8) SIP 200 OK

(9) SIP 200 OK

(10) SIP ACK
(11) SIP ACK

(13) HTTP 200 OK

(3) HTTP GET customer form

(5) HTTP POST form results

(12) HTTP GET form results

Controller

Figure 6.20: Call flow for web form entry for call center

The call flow for this application is shown in Figure 6.20. The caller sends an INVITE to

the controller (1). The controller returns a provisional response (2) containing a Call-Info header.

This header contains an HTTP URL that resolves to the controller. The client fetches the content

referenced by the URL (3). The response (4) contains a form for the caller to fill out. The user fills

out the form and posts it back to the controller (5). The posted form is accepted (6). Now that the

298

controller has sufficient information to route the call, it forwards the INVITE (7) to the right call

center agent. This request also has a Call-Info header with a URL that resolves to the controller.

This URL can be used to fetch the form data (along with any other customer specific data the

server would like to provide). The call center agent answers the call (8), and the acceptance is

forwarded to the caller (9). The call is ACKed (10,11). Then, the call center agent fetches the

URL presented in the Call-Info header in the INVITE (12). This returns a web page with the

caller’s form information (13).

6.5.5 Speech-to-text for the Hearing Impaired

We have investigated numerous applications enabled by our model which can benefit the hear-

ing impaired [274]. These applications generally involve translations between communications

mediums, such as text, speech, and video. One such application, “Speech-to-text for the Hearing

Impaired” , is described in Section 6.2.

The application is enabled with a pair of translation components. One translation compo-

nent converts the speech to text, and another, the text to speech. The controller connects the the

hearing impaired callee and the non-impaired caller to these translation components. If the caller

was connected through the PSTN, a gateway component would be involved as well.

A call flow for this application is shown in Figure 6.21. We refer to the text-to-speech

component as the TTS component, and the speech-to-text component as the STT component. The

caller is a non-impaired user, and the callee is hearing impaired. The called party makes use of a

text chat tool.

The caller, who is unaware the callee is using a text chat tool, places a call to the SIP

URL of the callee, sip:calledparty@controller.com. It formulates a SIP INVITE,

and sends it to the controller (1). The SDP in this INVITE is A1, and it indicates a single, audio

media stream. The receipt of the INVITE at the controller triggers the application. It sends a

provisional response to the caller (2), indicating that translation services are being invoked. This

is easily done by using an appropriate reason phrase; i.e., “183 Translation for Hearing Impaired

Being Established” . Then, using third party call control mechanisms, it sends an INVITE to

a text-to-speech (TTS) component (3). This INVITE contains an SDP, A2, constructed by the

299

(5) SIP ACK

(11) SIP ACK

(13) SIP ACK

(15) RTP text

(2) SIP 183

(4) SIP 200 OK T1

(8) SIP ACK

(14) RTP speech

(16) RTP text

(17) RTP speech

Caller Called Partycontroller
TTS

Component
STT

Component

(1) SIP INVITE A1

(3) SIP INVITE A2

(6) SIP INVITE T2

(7) SIP 200 OK B1

(9) SIP INVITE B2

(10) SIP 200 OK U1

(12) SIP 200 OK U2

Figure 6.21: Bidirectional translation services for the hearing impaired

controller. This SDP contains two media streams. One is an audio stream, listed as receive-only,

and the other is a text stream, listed as send-only. The audio stream contains the IP addresses,

ports, and codecs from the media stream definition in SDP A1. This will connect a one way

speech stream from the TTS component, to the caller. The TTS component accepts the call and

responds with a 200 OK (4). The SDP in this response (T1) also indicates two media streams.

One is the audio stream, listed as send-only, and the other is a text stream, listed as receive-only.

The receive-only text stream indicates the IP address and port that it expects to receive the text

stream. Now, the controller sends an INVITE to the original callee (6), with SDP T2. T2 indicates

a single bidirectional text media stream. The stream indicates the IP address and port to use, and

these are the IP address and port from SDP T1. This will connect a one way text stream from the

callee, to the TTS component. The callee responds with a 200 OK (7), containing SDP B1. B1

indicates a single bidirectional text media stream, containing the IP address and port where the

callee would like to receive the text stream.

300

Now, the controller must introduce the speech-to-text component. It sends an INVITE

(9) to the STT component. This INVITE contains SDP B2. B2 indicates two media streams.

One is a receive-only text stream, and the other is a send-only audio stream. The IP address

and port for the receive-only text stream are copied from SDP B1. This will connect a one way

text stream from the STT component, to the callee. The 200 OK response (10) from the STT

components contains SDP U1. SDP U1 has two media streams. One is a send-only text stream,

and the other is a receive-only audio stream. This response is acknowledged (11). Finally, the

controller sends a 200 OK response to the caller (12). The SDP in this response, U2, contains

a single bidirectional audio stream. The IP address and port for this stream are copied from the

receive-only audio stream in SDP U1. This will connect a one way audio stream from the caller,

to the STT component. After the ACK is sent (13), the translation service is established. Speech

flows from the caller to the STT component, and then to the callee as text. Text flows from the

called party, to the TTS component, and back to the caller as speech.

6.6 Comparison to Existing Architectures

It is difficult to quantify the strengths and weaknesses of our architecture as compared to those that

have been described previously in the literature and summarized above in Section 6.3. However,

we can evaluate it qualitatively based on the requirements we outlined in Section 6.2.

6.6.1 DFC and ECLIPSE

The ECLIPSE architecture [246], which extends DFC into the IP communications space for an

implementation, is most closely related to our architecture, and for this reason, we consider it

first. ECLIPSE uses IP protocols between components, allowing them to be widely distributed. It

uses a centralized feature router, much like our controller, to compose feature boxes together. It

supports applications that integrate other IP applications, including instant messaging and web. It

has demonstrated interoperability with PSTN endpoints through gateway feature boxes. Features

can be provided for heterogeneous devices, ranges from phones to web enabled Internet telephony

PC clients.

301

However, there are some important differences. The goal of DFC and ECLIPSE is not

to describe a single feature as a desired composition of components, rather, it is to manage the

interaction of a number of different features, each implemented as a single component. This

distinction is important in regards to several of our requirements. First, it means that the DFC

architecture has not been proven as a means for building large and complex applications. DFC

has not focused on defining modular, highly reusable feature boxes, and it is not known whether

the existing set of feature boxes (nearly 100 [246]) are readily composed to construct the applica-

tions we describe here. Furthermore, it is unlikely that their precedence rules, which are used to

determine the ordering and usages of feature boxes, is sufficient for purposefully composing fea-

ture boxes to build a more complex application. Another implication of this distinction is that it

is not known whether DFC facilitates rapid construction of new applications, for the same reason

it is not known whether it supports construction of modular ones.

On a more practical perspective, a weakness of DFC and ECLIPSE is that they have

defined their own, proprietary protocols for interconnection between components. These proto-

cols have not been defined for inter-domain operation. As such, it is not likely that they could

construct applications where a single complex application is built from feature boxes provided

by separate providers. Furthermore, third party development is not facilitated by the usage of

proprietary protocols and APIs.

Note, however, that ECLIPSE has specified line interface boxes that can interface SIP

systems to their protocol. However, that does not mean that feature boxes themselves can be

interconnect with SIP (whereas we have shown that it can be done between our components),

unless it can be demonstrated that their is a one-to-one mapping between the two protocols.

6.6.2 Distributed Software and Component Architectures

In Section 6.3.2, we considered many distributed software and component architectures. We

pointed out that these architectures, which generally relied on distributed object middleware (usu-

ally CORBA), had difficulties meeting some of our requirements. Specifically, they had difficulty

handling third party component providers and third party component service providers. This

was largely a result of the non-standard interfaces between components, and the security, and

302

backwards compatibility issues with inter-domain communications.

Our architecture overcomes these limitations. By using industry standardized protocols

as the interfaces between components, third party development is enabled, since third parties

generally prefer to implement to standardized interfaces.

Usage of industry standard protocols helps overcome the interoperability issues discussed

in Section 6.3.2. SIP (and HTTP) have significant support for extensibility. Clients can request

new features, and if the server doesn’ t support them, the requests are ignored. SIP extensions have

been defined that let a client indicate what extensions they support, so that the server can apply

extensions to the response [275]. These extensibility mechanisms are not possible in CORBA

systems.

Domain interoperability issues are also addressed. Inter-domain naming and routing,

inter-domain and end-to-end security mechanisms, and discovery features are all provided by

SIP, and fully spelled out in its specifications.

Finally, because of the existence of equipment that speaks these standardized protocols

(gateways, media servers, clients, and so on), complete systems can be built more rapidly.

To a large degree, usage of distributed object systems, as opposed to designing customized

protocols, is one of personal taste and preferences. We believe that customized protocols can

always be designed to outperform a general purpose framework for almost any metric that can

be defined. Of course, this comes at the expense of additional development time to build these

customized protocols, which frequently share functionality with each other in any case. Our

architecture presents an intermediate approach. We do use customized protocols, but they are

fairly general purpose ones in their own right (which explains why we can construct so many

different applications with them). Thus, we inherit some of the reuse benefits that exist in CORBA

systems, yet inherit the inter-domain operation, better performance, and better extensibility that

is derived from customized protocols.

It is interesting to note that the Simple Object Access Protocol (SOAP) [266] is under

development within the W3C as an RPC mechanism for business-to-business transactions based

on inter-domain network protocols (HTTP, specifically). The driving factors behind SOAP, the

need for secure, robust, inter-domain, application-specific RPC, are the same factors which led

303

us to specify the use of SIP for inter-component communications.

6.6.3 Mobile Agents

We discussed existing mobile agent approaches, based either on Turing complete languages, or

domain specific languages, in Section 6.3.4. These approaches based on Turing complete lan-

guages have significant security and interoperability problems, while the domain specific ap-

proaches are functionally limited.

Our architecture overcomes these limitations. Using industry standardized protocols for

interdomain communication allows us to use the security features they provide. There is no risk of

malicious code, yet we have the benefit of being able to construct arbitrarily complex applications

whose components can span domains.

6.6.4 Centralized Architectures

We outlined a number of problems with centralized architectures in Section 6.3.1. These prob-

lems were the inability to support third party development of applications, long development

cycles for new applications, difficulty integrating heterogeneous access devices, and inability to

support third party components or providers.

Not surprisingly, our architecture rectifies all of these problems. By distributing compo-

nents, rather than relying on centralized, monolithic code, we improve the time to develop new

applications. Our architecture enables third party component providers, which is fundamentally

impossible in the centralized service model.

6.7 Conclusions and Future Work

In this chapter, we have examined the problem of building complex telecommunications applica-

tions in an Internet telephony system. The end-to-end nature of the Internet enables distributed

service architectures, which are advantageous because of their faster development cycles and

better scalability. However, our challenge was to enable distributed architectures where the com-

ponents could be distributed amongst services providers, incorporate non-voice Internet applica-

304

tions, and still work with users connected through the telephone network.

Much of the existing work on distributed service architectures made use of distributed

software middleware, such as CORBA or JavaBeans. However, we found that these systems end

up being proprietary and do not enable inter-provider communications. Our contribution is the

construction of a distributed component architecture that makes use of industry standard, inter-

domain call signaling and bulk data transfer protocols between components. We define a series of

highly reusable components, and for each, describe their functions and interfaces. We then show

how these components can be used to construct complex applications.

We, along with a team of engineers at the employer of the author of this dissertation,

have constructed the controller component described in this architecture, along with the presence

and messaging components. We obtained commercially available mixing components and dialog

components, which were constructed according to the interfaces we define here. The architecture

was validated by building and demonstrating the auto-conference application. Our component

architecture allowed for substantial reuse. The code at the controller, which was the only code

specific to this application, was written in Java, using the SIP and HTTP servlet specifications

[276, 277]. It was less than 1000 lines of Java code, including the code for the generation of the

web pages. We believe this is an excellent result, and demonstrates that applications can indeed

be written rapidly with this architecture.

The continuing challenge with any service architecture is to apply it to more and more

applications. Future work involves the investigation of more complex applications, to validate the

architecture and to identify additional components needed to enable those applications.

305

Chapter 7

Conclusion and Future Work

We conclude this dissertation by focusing once more on some of the fundamental differences

between IP networks and circuit networks, casting our work in that light and looking at future

problems for multimedia IP communications.

The most apparent difference between IP networks and the circuit networks is the nature

of the data delivery service. Circuits offer low latency, zero jitter, and low loss, whereas IP

networks have highly variable delays, substantial jitter, and variable loss rates. Not surprisingly,

this means that best effort IP networks (and indeed, packet networks in general), are not as well

suited for synchronous multimedia delivery. Approaches to solving this problem have been fairly

well investigated. Our contribution is the realization that these varying solutions interact with

each other, and that such interactions need to be considered in order to improve the application to

application perception of quality. It is our belief that voice transport problems will ultimately be

addressed at the network layer itself, through the usage of application-independent QoS services,

such as integrated services, differentiated services, and packet scheduling systems within the

network. The challenge, therefore, will be to consider the interaction the existing end-to-end

adaptation mechanisms (such as FEC, playout buffer adaptation, packet loss concealment) with

these techniques.

Interestingly, the most important difference between IP networks and circuit networks, as

far as delivery of multimedia communications services, is not the increase in jitter or packet loss,

but rather the end-to-end nature of the Internet as compared with the centralized and segmented

306

nature of the public switched telephone network. The end-to-end nature of the Internet means all

hosts, which include end-user participants and network servers, are directly addressable by any

other host. This fundamentally changes many aspects of the way telecommunications services

are offered.

At the simplest level, end users can now directly communicate with each other without

the support of application layer intermediaries. If party A wishes to talk with party B, party A

need only be aware of the IP address of party B. Messaging can then take place directly between

A and B in order to establish a call. In such a scenario, network switches are no longer present;

rather, application unaware routers provide the connectivity. In practice, party A will not know

the IP address of party B. Therefore, network servers are required to provide name to address

translation and user discovery services. These servers, known as proxies in SIP terminology,

play a similar role to the SS7 signaling network elements in the PSTN. Both are responsible for

forwarding call establishment messages from caller to callee. However, their role differs in many

respects. Although the PSTN supports a separate signaling and circuit transport network, the

primary role of the SS7 switches are to establish the circuit path. SIP proxies, on the other hand,

have no interaction with media connectivity. They do not need to remain in the call signaling path

once the call is established. This implies that they are not responsible for providing many of the

services and applications their SS7 equivalents provide.

This difference, in turn, creates some important technical problems that need to be ad-

dressed. In the circuit switched network, quality of the media transport is monitored by the

switches. Inter-switch signaling protocols provide mechanisms to detect failure conditions and

errors, and to switch to alternates if needed. However, in IP networks, the equivalent of the switch,

the proxy server, no longer handles media traffic. Therefore, the monitoring of the transport qual-

ity happens end-to-end, rather than between switches. This need has driven the development of

RTCP, and has introduced scaling issues for large party conferences. Our reconsideration work

has addressed these problems and allowed for end-to-end feedback to work for small and large

party conferences alike. Additional work is needed to improve the quality of this feedback in the

common case of unicast, point-to-point media communications.

The substantially differing roles between a circuit switch and a proxy server also mean

307

that the signaling protocols used for call establishment need to be different. Instead of estab-

lishing hop-by-hop circuit connections, end-to-end transport parameters are conveyed. Since the

proxies are not participants in the end-to-end media sessions, the information about these sessions

can be separated from the call routing aspects of the signaling protocols, which are important for

the proxies. This would dictate a signaling protocol that separates the transfer of signaling infor-

mation from the content of the session established by the signaling. Indeed, this is exactly how

SIP operates.

The differences between switches and proxies also mean that features are provided in

an entirely different way. Normally, the switch handled the media and signaling for a call. A

switch had the one and only point of access for communicating with the end systems in a call.

However, in IP networks, these assumptions are no longer true. Proxies do not handle the media,

and are not the sole point of communication between the end device and the network. This means

that call features can and should no longer be provided in the same way they were in the circuit

network. Many features belong in the end devices; typically, these are features which require

knowledge about all calls established to that device (such as call waiting). Since the device can

establish calls without support from any network intermediaries, the only entity that knows about

all calls established to the device is the end device itself. Other features can be distributed to

specialized devices scattered about the network. Since the IP network is end-to-end, the end user

devices can directly communicate the the network servers providing features, as needed. Our

work on the application component architecture for SIP shows how to taxonomize and construct

a wide set of applications in this model. However, much additional work is needed on features

and applications. The problem of feature interaction, in particular, is much more difficult in IP

networks. The distributed nature of features, and the introduction of new applications as part

of communications features (such as web and instant messaging), further complicate the feature

interaction problem. Furthermore, several telephony features require cooperation from a large

set of elements in the circuit network. A example of such a service is emergency calling, which

requires support at almost all levels of the telephone network. Providing support for these features

in an IP network poses significant technical obstacles. Indeed, it is not even clear what 911 means

in a multi-application network. Can a user send an instant message to 911 and expect similar

308

results to making a phone call to 911? What aspects of 911 are application independent, and

therefore need to be supported in the underlying IP network itself? Do we require there to be a

911 IP address [278]?

The end-to-end nature of the Internet, and of IP networks, is what allows for an applica-

tion to be distributed amongst components scattered throughout the network. It also allows end

users to directly talk to other network resources, such as telephony gateways, without interven-

ing providers. However, in order to communicate with such resources, they must be discovered.

This resource discovery problem for telecommunication services is unique to IP networks. It

exists only because it is possible for end users to communicate directly with servers from other

providers. Our work on multicast-based discovery of network services, and telephony gateways

in particular, provides a scalable solution for this problem. Much more work remains in this area

as well. Our techniques are particularly susceptible to packet loss, which can increase substan-

tially the amount of time it takes to discover a new resource. Similarly, the large learning times

make it difficult to apply our techniques to resources whose characteristics are highly dynamic.

We believe that these problems can be addressed by forms of distributed forward error correction,

commonly used in reliable multicast protocols [279].

Further integration of IP-based telecommunications services with the existing circuit

switched network will continue to pose new research problems. For example, how can local

number portability services be provided to IP endpoints? Can existing PSTN billing systems be

used to bill for IP telephony calls? Work also remains to address security for Internet telephony.

Specifically, Internet telephony introduces many new opportunities for fraud, denial of service,

and theft of service. These security weaknesses must be found and countered.

309

Bibliography

[1] D. Cohen, “ Issues in transnet packetized voice communications,” in Proceedings of the

Fifth Data Communications Symposium, (Snowbird, Utah), pp. 6–10 – 6–13, ACM, IEEE,

Sept. 1977.

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: a transport protocol for

real-time applications,” Request for Comments 1889, Internet Engineering Task Force,

Jan. 1996.

[3] V. Paxson, “End-to-end internet packet dynamics,” in SIGCOMM Symposium on Commu-

nications Architectures and Protocols, (Cannes, France), Sept. 1997.

[4] V. Paxson, Measurements and Analysis of End-to-End Internet Dynamics. PhD thesis,

University of California at Berkeley, Berkeley, California, May 1997.

[5] International Telecommunication Union (ITU), “Transmission systems and media, general

recommendation on the transmission quality for an entire international telephone connec-

tion; one-way transmission time,” Recommendation G.114, Telecommunication Standard-

ization Sector of ITU, Geneva, Switzerland, Mar. 1993.

[6] H. Sanneck and N. T. L. Le, “Speech property-based FEC for Internet Telephony applica-

tions,” in Proceedings of the SPIE/ACM SIGMM Multimedia Computing and Networking

Conference (MMCN), (San Jose, California), pp. 38–51, Jan. 2000.

[7] N. S. Jayant, “Effects of packet losses on waveform-coded speech,” in Proceedings of

the Fifth International Conference on Computer Communications, (Atlanta, Georgia),

pp. 275–280, IEEE, Oct. 1980.

310

[8] J. Wroclawski, “Specification of the controlled-load network element service,” Request for

Comments 2211, Internet Engineering Task Force, Sept. 1997.

[9] S. Shenker, C. Partridge, and R. Guerin, “Specification of guaranteed quality of service,”

Request for Comments 2212, Internet Engineering Task Force, Sept. 1997.

[10] R. Braden, Ed., L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation pro-

tocol (RSVP) – version 1 functional specification,” Request for Comments 2205, Internet

Engineering Task Force, Sept. 1997.

[11] R. Braden and L. Zhang, “Resource ReSerVation protocol (RSVP) – version 1 message

processing rules,” Request for Comments 2209, Internet Engineering Task Force, Sept.

1997.

[12] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An architecture

for differentiated service,” Request for Comments 2475, Internet Engineering Task Force,

Dec. 1998.

[13] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the differentiated services field

(DS field) in the IPv4 and IPv6 headers,” Request for Comments 2474, Internet Engineer-

ing Task Force, Dec. 1998.

[14] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski, “Assured forwarding PHB group,”

Request for Comments 2597, Internet Engineering Task Force, June 1999.

[15] V. Jacobson, K. Nichols, and K. Poduri, “An expedited forwarding PHB,” Request for

Comments 2598, Internet Engineering Task Force, June 1999.

[16] G. Carle and E. W. Biersack, “Survey of error recovery techniques for IP-based audio-

visual multicast applications,” IEEE Network, Vol. 11, pp. 24–36, Nov. 1997.

[17] A. Mukherjee, “On the dynamics and significance of low frequency components of Internet

load,” Internetworking: Research and Experience, Vol. 5, pp. 163–205, Dec. 1994.

311

[18] J.-C. Bolot, “End-to-end packet delay and loss behavior in the Internet,” in SIGCOMM

Symposium on Communications Architectures and Protocols (D. P. Sidhu, ed.), (San Fran-

cisco, California), pp. 289–298, ACM, Sept. 1993. also in Computer Communication

Review 23 (4), Oct. 1992.

[19] D. L. Mills, “ Internet delay experiments,” Request for Comments 889, Internet Engineer-

ing Task Force, Dec. 1983.

[20] D. Sanghi, A. K. Agrawala, O. Gudmundson, and B. N. Jain, “Experimental assessment of

end-to-end behavior on Internet,” in Proceedings of the Conference on Computer Commu-

nications (IEEE Infocom), (San Francisco, California), pp. 867–874 (7d.2), March/April

1993.

[21] M. Yajnik, J. Kurose, and D. Towsley, “Packet loss correlation in the MBone multicast

network,” in Proceedings of Global Internet, (London, England), Nov. 1996.

[22] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement and modelling of the tem-

poral dependence in packet loss,” in Proceedings of the Conference on Computer Commu-

nications (IEEE Infocom), (New York), Mar. 1999.

[23] M. Handley, “An examination of MBone performance,” Technical Report ISI/RR-97-450,

ISI, Jan. 1997.

[24] N. F. Maxemchuk and S. Lo, “Measurement and interpretation of voice traffic on the In-

ternet,” in Conference Record of the International Conference on Communications (ICC),

(Montreal, Canada), June 1997.

[25] International Telecommunication Union, “Dual rate speech coder for multimedia commu-

nications transmitting at 5.3 and 6.3 kbit/s,” Recommendation G.723.1, Telecommunica-

tion Standardization Sector of ITU, Geneva, Switzerland, Mar. 1996.

[26] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive playout mechanisms for

packetized audio applications in wide-area networks,” in Proceedings of the Conference

312

on Computer Communications (IEEE Infocom), (Toronto, Canada), pp. 680–688, IEEE

Computer Society Press, Los Alamitos, California, June 1994.

[27] P. T. Brady, “A statistical analysis of on-off patterns in 16 conversations,” Bell System

Technical Journal, Vol. 47, pp. 73–91, Jan. 1968.

[28] C. Perkins, O. Hodson, and V. Hardman, “A survey of packet loss recovery techniques for

streaming audio,” IEEE Network, Vol. 12, pp. 40–48, Sept. 1998.

[29] C. Perkins and O. Hodson, “Options for repair of streaming media,” Request for Comments

2354, Internet Engineering Task Force, June 1998.

[30] International Telecommunication Union, “Coding of speech at 8 kbit/s using conjugate-

structure algebraic-code-excited linear-prediction annex A: Reduced complexity 8 kbit/s

CS-ACELP speech codec,” Recommendation G.729A, Telecommunication Standardiza-

tion Sector of ITU, Geneva, Switzerland, Nov. 1996.

[31] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J. C. Bolot, A. Vega-Garcia,

and S. Fosse-Parisis, “RTP payload for redundant audio data,” Request for Comments

2198, Internet Engineering Task Force, Sept. 1997.

[32] J.-C. Bolot and A. V. Garcia, “Control mechanisms for packet audio in the Internet,” in

Proceedings of the Conference on Computer Communications (IEEE Infocom), (San Fran-

sisco, California), Mar. 1996.

[33] V. Hardman, A. Sasse, M. Handley, and A. Watson, “Reliable audio for use over the Inter-

net,” in Proc. of INET’95, (Honolulu, Hawaii), June 1995.

[34] J.-C. Bolot, S. Fosse-Parisis, and D. Towsley, “Adaptive FEC-Based error control for in-

teractive audio in the Internet,” in Proceedings of the Conference on Computer Communi-

cations (IEEE Infocom), (New York), Mar. 1999.

[35] N. Shacham and P. McKenney, “Packet recovery in high-speed networks using coding

and buffer management,” in Proceedings of the Conference on Computer Communications

(IEEE Infocom), (San Francisco, California), pp. 124–131, IEEE, June 1990.

313

[36] E. W. Biersack, “Performance evaluation of forward error correction in ATM networks,”

in SIGCOMM Symposium on Communications Architectures and Protocols (D. P. Sidhu,

ed.), (Baltimore, Maryland), pp. 248–257, ACM, Aug. 1992. in Computer Communication

Review 22 (4), Oct. 1992.

[37] E. W. Biersack, “Performance evaluation of foreward error correction in an ATM environ-

ment,” IEEE Journal on Selected Areas in Communications, Vol. SAC-11, no. 4, 1994.

[38] L. Rizzo, “Erasure codes for computer communication protocols,” technical report, Uni-

versita di Pisa, Pisa, Italy, Jan. 1997.

[39] J. Nonnenmacher, E. Biersack, and D. Towsley, “Parity-based loss recovery for reliable

multicast transmission,” ACM Computer Communication Review, Vol. 27, pp. 289–300,

Oct. 1997. ACM SIGCOMM’97, Sept. 1997.

[40] D. Rubenstein, S. Kasera, D. Towsley, and J. Kurose, “ Improving reliable multicast using

active parity encoding services (APES),” in Proceedings of the Conference on Computer

Communications (IEEE Infocom), (New York), Mar. 1999.

[41] N. Matsuo, M. Yuito, and Y. Tokunaga, “Packet interleaving for reducing speech quality

degradation in packet voice communications,” in Proceedings of the IEEE Conference

on Global Communications (GLOBECOM), (Tokyo, Japan), pp. 1787–1791, IEEE, Nov.

1987.

[42] C. Perkins, “RTP payload format for interleaved media,” Internet Draft, Internet Engineer-

ing Task Force, Feb. 1999. Work in progress.

[43] B. J. Dempsey, J. Liebeherr, and A. C. Weaver, “A new error control scheme for packetized

voice over high-speed local area networks,” Technical Report CS-93-23, Computer Science

Department, University of Virginia, Charlottesville, VA 22903, May 1993.

[44] B. J. Dempsey, J. Liebeherr, and A. C. Weaver, “A delay-sensitive error control scheme

for continuous media communications,” Technical Report CS-93-45, Computer Science

Department, University of Virginia, Charlottesville, Virginia, Oct. 1993.

314

[45] H. Sanneck, Packet Loss Recovery and Control for Voice Transmission over the Internet.

PhD thesis, Technical University of Berlin, Oct. 2000.

[46] J. Rosenberg, L. Qiu, and H. Schulzrinne, “ Integrating packet FEC into adaptive voice

playout buffer algorithms on the Internet,” in Proceedings of the Conference on Computer

Communications (IEEE Infocom), (Tel Aviv, Israel), Mar. 2000.

[47] S. B. Moon, J. Kurose, and D. Towsley, “Packet audio playout delay adjustment: perfor-

mance bounds and algorithms,” Multimedia Systems, Vol. 5, pp. 17–28, Jan. 1998.

[48] G. Barberis and D. Pazzaglia, “Analysis and optimal design of a packet-voice receiver,”

IEEE Transactions on Communications, Vol. COM-28, pp. 217–227, Feb. 1980.

[49] P. M. Gopal, J. W. Wong, and J. C. Majithia, “Analysis of playout strategies for voice

transmission using packet switching techniques,” Performance Evaluation, Vol. 4, pp. 11–

18, Feb. 1984.

[50] T. Suda, H. Miyahara, and T. Hasegawa, “Performance evaluation of a packetized voice

system – simulation study,” IEEE Transactions on Communications, Vol. COM-34, pp. 97–

102, Jan. 1984.

[51] W. A. Montgomery, “Techniques for packet voice synchronization,” IEEE Journal on Se-

lected Areas in Communications, Vol. SAC-1, pp. 1022–1028, Dec. 1983.

[52] F. Alvarez-Cuevas, M. Bertran, F. Oller, and J. M. Selga, “Voice synchronization in packet

switching networks,” IEEE Network, Vol. 7, pp. 20–25, Sept. 1993.

[53] W. E. Naylor and L. Kleinrock, “Stream traffic communication in packet switched

networks: destination buffering constraints,” IEEE Transactions on Communications,

Vol. COM-30, pp. 2527–2534, Dec. 1982.

[54] A. Campbell and G. Coulson, “QoS adaptive transports: Delivering scalable media to the

desk top,” IEEE Network, Vol. 11, pp. 18–27, Mar. 1997.

[55] K. Rothermel and T. Helbig, “An adaptive stream synchronization protocol,” in Proc. Inter-

national Workshop on Network and Operating System Support for Digital Audio and Video

315

(NOSSDAV), Lecture Notes in Computer Science, (Durham, New Hampshire), pp. 189–

202, Springer, Apr. 1995.

[56] A. Campbell, G. Coulson, F. Garćia, and D. Hutchison, “A continuous media transport and

orchestration service,” in SIGCOMM Symposium on Communications Architectures and

Protocols (D. P. Sidhu, ed.), (Baltimore, Maryland), pp. 99–110, ACM, Aug. 1992. in

Computer Communication Review 22 (4), Oct. 1992.

[57] J. Escobar, D. Deutsch, and C. Partridge, “Flow synchronization protocol,” in Proceedings

of the IEEE Conference on Global Communications (GLOBECOM), (Orlando, Florida),

pp. 1381–1387 (40.04), IEEE, Dec. 1992.

[58] S. Moon, P. Skelly, and D. Towsley, “Estimation and removal of clock skew from network

delay measurements,” in Proceedings of the Conference on Computer Communications

(IEEE Infocom), (New York), Mar. 1999.

[59] G. Liebl et al., “An RTP payload format for erasure-resilient transmission of progressive

multimedia streams,” Internet Draft, Internet Engineering Task Force, Feb. 2001. Work in

progress.

[60] S. Casner and V. Jacobson, “Compressing IP/UDP/RTP headers for low-speed serial links,”

Request for Comments 2508, Internet Engineering Task Force, Feb. 1999.

[61] C. Perkins, I. Kouvelas, O. Hodson, V. Hardman, M. Handley, J. Bolot, A. Vega-Garcia,

and S. Fosse-Parisis, “RTP payload for redundant audio data,” Internet Draft, Internet En-

gineering Task Force, Aug. 1998. Work in progress.

[62] R. G. Kermode, “Scoped hybrid automatic repeat request with forward error correction

(SHARQFEC),” ACM Computer Communication Review, Vol. 28, pp. 278–289, Sept.

1998.

[63] D. Rubenstein, J. Kurose, and D. Towsley, “Real-time reliable multicast using proactive

forward error correction,” in Proc. International Workshop on Network and Operating

316

System Support for Digital Audio and Video (NOSSDAV), (Cambridge, England), pp. 279–

293, July 1998.

[64] J. Rosenberg and H. Schulzrinne, “An RTP payload format for generic forward error cor-

rection,” Request for Comments 2733, Internet Engineering Task Force, Dec. 1999.

[65] A. Li et al., “An RTP payload format for generic FEC with uneven level protection,” Inter-

net Draft, Internet Engineering Task Force, Nov. 2000. Work in progress.

[66] K. Almeroth and M. Ammar, “Collection and modeling of the join/leave behavior of mul-

ticast group members in the MBone,” in High Performance Distributed Computing Focus

Workshop (HPDC ’96), (Syracuse, NY), Aug. 1996.

[67] K. C. Almeroth and M. H. Ammar, “Multicast group behavior in the Internet’s multicast

backbone (MBone),” IEEE Communications Magazine, Vol. 35, June 1997.

[68] M. Handley, C. Perkins, and E. Whelan, “Session announcement protocol,” Request for

Comments 2974, Internet Engineering Task Force, Oct. 2000.

[69] S. Floyd and V. Jacobson, “The synchronization of periodic routing messages,” in SIG-

COMM Symposium on Communications Architectures and Protocols (D. P. Sidhu, ed.),

(San Francisco, California), pp. 33–44, ACM, Sept. 1993. also in [280].

[70] J. Nonnenmacher and E. W. Biersack, “Optimal multicast feedback,” in Proceedings of the

Conference on Computer Communications (IEEE Infocom), (San Francisco, California),

pp. 964–971, March/April 1998.

[71] J.-C. Bolot, T. Turletti, and I. Wakeman, “Scalable feedback control for multicast video

distribution in the internet,” in SIGCOMM Symposium on Communications Architectures

and Protocols, (London, England), pp. 58–67, ACM, Aug. 1994.

[72] V. Jacobson, “sd, the LBL session directory.” Manual page, Nov. 1992.

[73] M. Handley, “Session directories and scalable internet multicast address allocation,” ACM

Computer Communication Review, Vol. 28, pp. 105–116, Sept. 1998.

317

[74] M. Hofmann and M. Rohrmuller, “ Impact of virtual group structure on multicast perfor-

mance,” in Fourth International COST 237 Workshop, (Lisbon, Portugal), pp. 165–180,

Springer Verlag, Dec. 1997.

[75] J. Chang and N. Maxemchuk, “A broadcast protocol for broadcast networks,” in Proceed-

ings of the IEEE Conference on Global Communications (GLOBECOM), Dec. 1993.

[76] B. Aboba, “Alternatives for enhancing RTCP scalability,” Internet Draft, Internet Engi-

neering Task Force, Jan. 1997. Work in progress.

[77] R. El-Marakby and D. Hutchison, “A scalability scheme for the real-time control proto-

col,” in Proc. of IFIP Conference on High Performance Networking (HPN’98), (Vienna,

Austria), Sept. 1998.

[78] J. Rosenberg and H. Schulzrinne, “Timer reconsideration for enhanced RTP scalability,”

in Proceedings of the Conference on Computer Communications (IEEE Infocom), (San

Francisco, California), March/April 1998.

[79] D. Waitzman, C. Partridge, and S. E. Deering, “Distance vector multicast routing protocol,”

Request for Comments 1075, Internet Engineering Task Force, Nov. 1988.

[80] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Jacobson, C. Liu,

P. Sharma, and L. Wei, “Protocol independent multicast-sparse mode (PIM-SM): protocol

specification,” Request for Comments 2362, Internet Engineering Task Force, June 1998.

[81] M. Handley and V. Jacobson, “SDP: session description protocol,” Request for Comments

2327, Internet Engineering Task Force, Apr. 1998.

[82] International Telecommunication Union, “Visual telephone systems and equipment for

local area networks which provide a non-guaranteed quality of service,” Recommenda-

tion H.323, Telecommunication Standardization Sector of ITU, Geneva, Switzerland, May

1996.

[83] R. Rivest, “The MD5 message-digest algorithm,” Request for Comments 1321, Internet

Engineering Task Force, Apr. 1992.

318

[84] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of a fair queueing al-

gorithm,” in SIGCOMM Symposium on Communications Architectures and Protocols,

(Austin, Texas), pp. 1–12, ACM, Sept. 1989. also in Computer Communications Review,

19 (4), Sept. 1989.

[85] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP: A transport protocol for

real-time applications,” Internet Draft, Internet Engineering Task Force, Mar. 2001. Work

in progress.

[86] J. Rosenberg and H. Schulzrinne, “Sampling of the group membership in RTP,” Request

for Comments 2762, Internet Engineering Task Force, Feb. 2000.

[87] International Telecommunication Union, “Functional description of the ISDN user part of

signalling system no. 7.,” Recommendation Q.761, Telecommunication Standardization

Sector of ITU, Geneva, Switzerland, 1994.

[88] C. Gbaguidi, J.-P. Hubaux, G. Pacifici, and A. N. Tantawi, “ Integration of Internet and

telecommunications: An architecture for hybrid services,” IEEE Journal on Selected Areas

in Communications, Vol. 17, pp. 1563–1578, Sept. 1999.

[89] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: session initiation proto-

col,” Request for Comments 2543, Internet Engineering Task Force, Mar. 1999.

[90] H. Schulzrinne and J. Rosenberg, “Signaling for Internet telephony,” in International Con-

ference on Network Protocols (ICNP), (Austin, Texas), Oct. 1998.

[91] M. Day, J. Rosenberg, and H. Sugano, “A model for presence and instant messaging,”

Request for Comments 2778, Internet Engineering Task Force, Feb. 2000.

[92] C. A. DellaFera, M. W. Eichin, R. S. French, D. C. Jedlinsky, J. T. Kohl, and W. E. Som-

merfeld, “The Zephyr notification service,” in USENIX Winter Conference, (Dallas, Texas),

Feb. 1988.

319

[93] International Telecommunication Union, “Bearer independent call control protocol,”

Recommendation Q.1901, Telecommunication Standardization Sector of ITU, Geneva,

Switzerland, Feb. 2000.

[94] International Telecommunication Union, “Packet based multimedia communication sys-

tems,” Recommendation H.323, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Feb. 1998.

[95] International Telecommunication Union, “Packet based multimedia communication sys-

tems,” Recommendation H.323, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Nov. 2000.

[96] International Telecommunication Union, “Media stream packetization and synchroniza-

tion on non-guaranteed quality of service LANs,” Recommendation H.225.0, Telecommu-

nication Standardization Sector of ITU, Geneva, Switzerland, Nov. 1996.

[97] International Telecommunication Union, “Control protocol for multimedia communi-

cation,” Recommendation H.245, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Feb. 1998.

[98] International Telecommunication Union, “Security and encryption for H-series (H.323 and

other H.245-based) multimedia terminals,” Recommendation H.235, Telecommunication

Standardization Sector of ITU, Geneva, Switzerland, Feb. 1998.

[99] International Telecommunication Union, “ Interworking of H-series multimedia terminals

with H-series multimedia terminals and voice/voiceband terminals on GSTN and ISDN,”

Recommendation H.246, Telecommunication Standardization Sector of ITU, Geneva,

Switzerland, Feb. 1998.

[100] International Telecommunication Union, “Generic functional protocol for the support of

supplementary services in H.323,” Recommendation H.450.1, Telecommunication Stan-

dardization Sector of ITU, Geneva, Switzerland, Feb. 1998.

320

[101] J. Toga and J. Ott, “ ITU-T standardization activities for interactive multimedia communi-

cations on packet-based networks: H.323 and related recommendations,” Computer Net-

works and ISDN Systems, Vol. 31, pp. 205–223, Feb. 1999.

[102] J. Toga and H. ElGebaly, “Demystifying multimedia conferencing over the Internet using

the H.323 set of standards,” Intel Technology Journal, 2nd quarter 1998.

[103] H. Schulzrinne and J. Rosenberg, “A comparison of SIP and H.323 for Internet telephony,”

in Proc. International Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDAV), (Cambridge, England), pp. 83–86, July 1998.

[104] B. Pagurek and T. White, “A quick evaluation of H.323/H.450,” Technical Report SCE-99-

02, Carleton University, Ottowa, Canada, Apr. 1999.

[105] C. Agboh, “A study of two main IP telephony signaling protocols: H.323 signaling and

SIP; a comparison and a signaling gateway specification,” Master’s thesis, Unversite Li-

bre de Bruxelles (ULB), Facuts des Science, Dpartment Informatique, Brussels, Belgium,

1999. supervised by Eric Manie.

[106] I. Dalgic and H. Fang, “Comparison of H.323 and SIP for IP telephony signaling,” in Proc.

of Photonics East, (Boston, Massachusetts), SPIE, Sept. 1999.

[107] O. Levin, “SIP requirements for support of multimedia and video,” Internet Draft, Internet

Engineering Task Force, Feb. 2001. Work in progress.

[108] H. Schulzrinne and J. Rosenberg, “The session initiation protocol: Internet-centric signal-

ing,” IEEE Communications Magazine, Vol. 38, Oct. 2000.

[109] H. Schulzrinne and J. Rosenberg, “Signaling for Internet telephony,” Technical Report

CUCS-005-98, Columbia University, New York, New York, Feb. 1998.

[110] H. Schulzrinne and J. Rosenberg, “The session initiation protocol: Providing advanced

telephony services across the Internet,” Bell Labs Technical Journal, Vol. 3, pp. 144–160,

October-December 1998.

321

[111] H. Schulzrinne and J. Rosenberg, “ Internet telephony: Architecture and protocols – an

IETF perspective,” Computer Networks and ISDN Systems, Vol. 31, pp. 237–255, Feb.

1999.

[112] A. Johnston, SIP: Understanding the Session Initiation Protocol. Artech House, 2001.

[113] J. Postel, “Simple mail transfer protocol,” Request for Comments 821, Internet Engineer-

ing Task Force, Aug. 1982.

[114] J. Klensin, “Simple mail transfer protocol,” Internet Draft, Internet Engineering Task

Force, Sept. 2000. Work in progress.

[115] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee,

“Hypertext transfer protocol – HTTP/1.1,” Request for Comments 2616, Internet Engi-

neering Task Force, June 1999.

[116] C. Elliott, “A ’sticky’ conference control protocol,” Internetworking: Research and Expe-

rience, Vol. 5, pp. 97–119, 1994.

[117] E. Schooler and S. L. Casner, “An architecture for multimedia connection management,”

ACM Computer Communication Review, Vol. 22, pp. 73–74, Mar. 1992.

[118] H. Schulzrinne, “Personal mobility for multimedia services in the Internet,” in European

Workshop on Interactive Distributed Multimedia Systems and Services (IDMS), (Berlin,

Germany), Mar. 1996.

[119] P. V. Mockapetris, “Domain names - concepts and facilities,” Request for Comments 1034,

Internet Engineering Task Force, Nov. 1987.

[120] P. V. Mockapetris, “Domain names - implementation and specification,” Request for Com-

ments 1035, Internet Engineering Task Force, Nov. 1987.

[121] J. Rosenberg, J. Peterson, H. Schulzrinne, and G. Camarillo, “Third party call control in

SIP,” Internet Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

322

[122] J. Rosenberg and H. Schulzrinne, “Reliability of provisional responses in SIP,” Internet

Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

[123] D. Crocker, “Standard for the format of ARPA internet text messages,” Request for Com-

ments 822, Internet Engineering Task Force, Aug. 1982.

[124] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform resource identifiers (URI): generic

syntax,” Request for Comments 2396, Internet Engineering Task Force, Aug. 1998.

[125] P. Hoffman, L. Masinter, and J. Zawinski, “The mailto URL scheme,” Request for Com-

ments 2368, Internet Engineering Task Force, July 1998.

[126] H. Schulzrinne and J. Rosenberg, “SIP: Session initiation protocol – locating SIP servers,”

Internet Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

[127] S. Donovan, “The SIP INFO method,” Request for Comments 2976, Internet Engineering

Task Force, Oct. 2000.

[128] A. Vemuri and J. Peterson, “SIP for telephones (SIP-t): Context and architectures,” Internet

Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

[129] J. Lennox and H. Schulzrinne, “Transporting user control information in SIP REGISTER

payloads,” Internet Draft, Internet Engineering Task Force, Oct. 2000. Work in progress.

[130] H. Schulzrinne, “RTP profile for audio and video conferences with minimal control,” Re-

quest for Comments 1890, Internet Engineering Task Force, Jan. 1996.

[131] N. Borenstein and N. Freed, “MIME (multipurpose internet mail extensions): Mecha-

nisms for specifying and describing the format of internet message bodies,” Request for

Comments 1341, Internet Engineering Task Force, June 1992.

[132] P. Hoschka, “Synchronized multimedia integration language (SMIL) 1.0 specification,”

W3C Recommendation REC-smil-19980615, World Wide Web Consortium (W3C), June

1998. Available at http://www.w3.org/TR/REC-smil/.

323

[133] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, “Extensible markup language (XML)

1.0,” W3C Recommendation REC-xml-19980210, World Wide Web Consortium (W3C),

Feb. 1998. Available at http://www.w3.org/TR/REC-xml.

[134] D. Kutscher, J. Ott, and C. Bormann, “Session description and capability negotiation,”

Internet Draft, Internet Engineering Task Force, Apr. 2001. Work in progress.

[135] N. Freed and N. Borenstein, “Multipurpose internet mail extensions (MIME) part one:

Format of internet message bodies,” Request for Comments 2045, Internet Engineering

Task Force, Nov. 1996.

[136] B. Ramsdell and Ed, “S/MIME version 3 message specification,” Request for Comments

2633, Internet Engineering Task Force, June 1999.

[137] F. Dawson, “The vcard v3.0 XML DTD,” Internet Draft, Internet Engineering Task Force,

June 1999. Work in progress.

[138] S. Thomas, R. Brennan, B. Anton, and D. Oran, “The application/osp-token MIME type,”

Internet Draft, Internet Engineering Task Force, Apr. 1999. Work in progress.

[139] M. O’Doherty, “Java enhanced SIP (JES),” Internet Draft, Internet Engineering Task Force,

Jan. 2001. Work in progress.

[140] R. Moats, “URN syntax,” Request for Comments 2141, Internet Engineering Task Force,

May 1997.

[141] J. Lennox and H. Schulzrinne, “CPL: a language for user control of internet telephony

services,” Internet Draft, Internet Engineering Task Force, July 2000. Work in progress.

[142] J. Lennox, H. Schulzrinne, and J. Rosenberg, “Common gateway interface for SIP,” Re-

quest for Comments 3050, Internet Engineering Task Force, Jan. 2001.

[143] “The apache project home page.” http://www.apache.org/.

[144] J. Lennox and H. Schulzrinne, “Call processing language framework and requirements,”

Request for Comments 2824, Internet Engineering Task Force, May 2000.

324

[145] B. Marshall et al., “ Integration of resource management and SIP,” Internet Draft, Internet

Engineering Task Force, Mar. 2001. Work in progress.

[146] J. Rosenberg and H. Schulzrinne, “SIP traversal through residential and enterprise NATs

and firewalls,” Internet Draft, Internet Engineering Task Force, Mar. 2001. Work in

progress.

[147] J. Rosenberg and H. Schulzrinne, “Models for multi party conferencing in SIP,” Internet

Draft, Internet Engineering Task Force, Nov. 2000. Work in progress.

[148] J. Rosenberg and H. Schulzrinne, “Guidelines for authors of SIP extensions,” Internet

Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

[149] S. Donovan and J. Rosenberg, “SIP session timer,” Internet Draft, Internet Engineering

Task Force, Nov. 2000. Work in progress.

[150] A. Vaha-Sipila, “URLs for telephone calls,” Request for Comments 2806, Internet Engi-

neering Task Force, Apr. 2000.

[151] J. Veizades, E. Guttman, C. Perkins, and S. Kaplan, “Service location protocol,” Request

for Comments 2165, Internet Engineering Task Force, June 1997.

[152] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service location protocol, version 2,”

Request for Comments 2608, Internet Engineering Task Force, June 1999.

[153] R. Droms, “Dynamic host configuration protocol,” Request for Comments 1541, Internet

Engineering Task Force, Oct. 1993.

[154] J. Rosenberg and H. Schulzrinne, “ Internet telephony gateway location,” in Proceedings of

the Conference on Computer Communications (IEEE Infocom), (San Francisco, Califor-

nia), March/April 1998.

[155] S. Brands, “Electronic cash on the Internet,” in Proc. of the Internet Society 1995 Sympo-

sium on Network and Distributed System Security, (San Diego, California), Feb. 1995.

325

[156] International Telecommunication Union, “Pulse code modulation (PCM) of voice fre-

quencies,” Recommendation G.711, Telecommunication Standardization Sector of ITU,

Geneva, Switzerland, Nov. 1998.

[157] International Telecommunication Union, “Coding of speech at 8 kbit/s using conjugate-

structure algebraic-code-excited linear-prediction,” Recommendation G.729, Telecommu-

nication Standardization Sector of ITU, Geneva, Switzerland, Mar. 1996.

[158] International Telecommunication Union, “Coding of speech at 16 kbit/s using low-delay

code excited linear prediction,” Recommendation G.728, Telecommunication Standardiza-

tion Sector of ITU, Geneva, Switzerland, Sept. 1992.

[159] International Telecommunication Union, “7 kHz audio coding within 64 kbit/s,” Recom-

mendation G.722, Telecommunication Standardization Sector of ITU, Geneva, Switzer-

land, Nov. 1988.

[160] Federal Communications Commission, “Statistics of communications common carriers.”

http://www.fcc.gov/Bureaus/Common Carrier/Reports/FCC-State Link/socc.html.

[161] D. Wessels and K. Claffy, “ Internet cache protocol (ICP), version 2,” Request for Com-

ments 2186, Internet Engineering Task Force, Sept. 1997.

[162] D. Wessels and K. Claffy, “Application of internet cache protocol (ICP), version 2,” Re-

quest for Comments 2187, Internet Engineering Task Force, Sept. 1997.

[163] H. Schulzrinne, A. Rao, and R. Lanphier, “Real time streaming protocol (RTSP),” Request

for Comments 2326, Internet Engineering Task Force, Apr. 1998.

[164] S. G. Dykes, C. L. Jeffery, and K. A. Robbins, “An empirical evaluation of client-side

server selection algorithms,” in Proceedings of the Conference on Computer Communica-

tions (IEEE Infocom), (Tel Aviv, Israel), Mar. 2000.

[165] R. L. Carter and M. E. Crovella, “Server selection using dynamic path characterization

in wide-area networks,” in Proceedings of the Conference on Computer Communications

(IEEE Infocom), (Kobe, Japan), p. 1014, Apr. 1997.

326

[166] M. E. Crovella and R. L. Carter, “Dynamic server selection in the Internet,” in Proceedings

of the Third IEEE Workshop on the Architecture and Implementation of High Performance

Communication Subsystems (HPCS’95), (Mystic, CT), Aug. 1995.

[167] M. Stemm, S. Seshan, and R. H. Katz, “A network measurement architecture for adap-

tive applications,” in Proceedings of the Conference on Computer Communications (IEEE

Infocom), (Tel Aviv, Israel), Mar. 2000.

[168] R. Vingralek, Y. Breitbart, M. Sayal, and P. Scheuermann, “Web++: A system for fast and

reliable web service,” in 1999 USENIX Annual Technical Conference, (Montery, Califor-

nia, USA), June 1999.

[169] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek, “Selection algorithms for repli-

cated web servers,” in Proc. of on Internet Server Performance (WISP ’98), (Madison,

Wisconsin), June 1998.

[170] D. Xu, K. Nahrstedt, and D. Wichadakul, “Megadip: a wide-area media gateway discovery

protocol,” in Proceedings of IEEE IPCCC 2000, Feb. 2000.

[171] A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying the location of services

(DNS SRV),” Request for Comments 2782, Internet Engineering Task Force, Feb. 2000.

[172] R. Stata, K. Bharat, and F. Maghoul, “The term vector database: fast access to indexing

terms for web pages,” Computer Networks, Vol. 33, pp. 247–255, June 2000.

[173] J. Shakes, M. Langheinrich, and O. Etzioni, “Dynamic reference sifting: a case study in

the homepage domain,” Computer Networks, Vol. 29, pp. 1193–1204, Sept. 1997.

[174] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web search engine,” Com-

puter Networks, Vol. 30, pp. 107–117, Apr. 1998.

[175] D. Byers, “Full-text indexing of non-textual resources,” Computer Networks, Vol. 30,

pp. 141–148, Apr. 1998.

327

[176] M. F. Schwartz, A. Emtage, B. Kahle, and C. Neuman, “A comparison of Internet resource

discovery approaches,” Computing Systems – The Journal of the Usenix Assocation, Vol. 5,

pp. 461–493, Fall 1992.

[177] C. Perkins and H. Harjono, “Resource discovery protocol for mobile computing,” in IFIP

’96 14th World Congress, Sept. 1996.

[178] Sun Microsystems, “Jini techonology core platform specification,” java specifications, Sun

Microsystems, Oct. 2000.

[179] Bluetooth, “Specification of the bluetooth system,” bluetooth specification, Bluetooth,

Dec. 1999.

[180] Salutation Consortium, “Salutation architecture specification version 2.0c,” salutation

specification, Salutation Consortium, June 1999.

[181] G. R. III, “Service advertisement and discovery: Enabling universal device cooperation,”

IEEE Internet Computing, Vol. 4, Sept. 2000.

[182] C. Bettstetter and C. Renner, “A comparison of service discovery protocols and imple-

mentation of the service location protocol,” in Proceedings EUNICE 2000, Sixth EUNICE

Open European Summer School, Twente, Netherlands, September 2000., Sept. 2000.

[183] W. Zhao, H. Schulzrinne, and E. Guttman, “mSLP - mesh-enhanced service location proto-

col,” in International Conference on Computer Communication and Network, (Las Vegas,

Nevada), Oct. 2000.

[184] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, M. F. Schwartz, and D. P. Wessels,

“Harvest: A scalable, customizable discovery and access system,” Technical Report CU-

CS-732-94, University of Colorado, Boulder, Colorado, Mar. 1995.

[185] C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Schwartz, “The Harvest

information discovery and access system,” Computer Networks and ISDN Systems, Vol. 28,

pp. 119–125, 1995.

328

[186] C. Perkins, “Wide area service location protocol,” Apr. 1998.

http://www.jdrosen.net/iptel/perkins mar98.ps.

[187] C. Malamud and M. Rose, “Principles of operation for the TPC.INT subdomain: Remote

printing – technical procedures,” Request for Comments 1528, Internet Engineering Task

Force, Oct. 1993.

[188] C. Malamud and M. Rose, “Principles of operation for the TPC.INT subdomain: General

principles and policy,” Request for Comments 1530, Internet Engineering Task Force, Oct.

1993.

[189] P. Faltstrom, “E.164 number and DNS,” Request for Comments 2916, Internet Engineering

Task Force, Sept. 2000.

[190] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness of DNS-based server selec-

tion,” in Proceedings of the Conference on Computer Communications (IEEE Infocom),

(Anchorage, Alaska), Apr. 2001.

[191] W. Yeong, T. Howes, and S. Kille, “Lightweight directory access protocol,” Request for

Comments 1777, Internet Engineering Task Force, Mar. 1995.

[192] M. Wahl, T. Howes, and S. Kille, “Lightweight directory access protocol (v3),” Request

for Comments 2251, Internet Engineering Task Force, Dec. 1997.

[193] A. L. Sears, “Directory services for Internet telephony: Creating a spanning layer over the

internet and telephone networks,” Master’s thesis, MIT, Cambridge, Massachusetts, Sept.

1997.

[194] P. Deutsch, R. Schoultz, P. Faltstrom, and C. Weider, “Architecture of the WHOIS++ ser-

vice,” Request for Comments 1835, Internet Engineering Task Force, Aug. 1995.

[195] C. Weider, J. Fullton, and S. Spero, “Architecture of the whois++ index service,” Request

for Comments 1913, Internet Engineering Task Force, Feb. 1996.

329

[196] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz, “An architecture

for a secure service discovery service,” in Mobicom, (Seattle, Washington), pp. 24–35,

Aug. 1999.

[197] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The design and implemen-

tation of an intentional naming system,” in Proc. ACM Symposium on Operating Systems

Principles, (Charleston, South Carolina), pp. 186–201, Association for Computing Ma-

chinery, Dec. 1999.

[198] J. Rosenberg, H. Salama, and M. Squire, “Telephony routing over IP (TRIP),” Internet

Draft, Internet Engineering Task Force, Nov. 2000. Work in progress.

[199] J. Rosenberg and H. Schulzrinne, “A framework for telephony routing over IP,” Request

for Comments 2871, Internet Engineering Task Force, June 2000.

[200] J. Allen and M. Mealling, “The architecture of the common indexing protocol (CIP),”

Request for Comments 2651, Internet Engineering Task Force, Aug. 1999.

[201] J. Allen and M. Mealling, “MIME object definitions for the common indexing protocol

(CIP),” Request for Comments 2652, Internet Engineering Task Force, Aug. 1999.

[202] Y. Rekhter and T. Li, “A border gateway protocol 4 (BGP-4),” Request for Comments

1771, Internet Engineering Task Force, Mar. 1995.

[203] S. Hanna, B. Patel, and M. Shah, “Multicast address dynamic client allocation protocol

(MADCAP),” Request for Comments 2730, Internet Engineering Task Force, Dec. 1999.

[204] M. Papadopouli and H. Schulzrinne, “Seven degrees of separation in mobile ad hoc net-

works,” in Proceedings of the IEEE Conference on Global Communications (GLOBE-

COM), (San Francisco, California), Nov. 2000.

[205] Y. Goland, T. Cai, P. Leach, Y. Gu, and S. Albright, “Simple service discovery Protocol/1.0

operationg without an arbiter,” Internet Draft, Internet Engineering Task Force, Nov. 1999.

Work in progress.

330

[206] E. Guttman, C. Perkins, and J. Kempf, “Service templates and service: Schemes,” Request

for Comments 2609, Internet Engineering Task Force, June 1999.

[207] W. S. Lai, “The leaky bucket algorithm for throughput control in packet networks.” Bell-

core, 1987.

[208] D. Meyer, “Administratively scoped IP multicast,” Request for Comments 2365, Internet

Engineering Task Force, July 1998.

[209] F. S. Dworak, T. F. Bowen, C. H. Chow, G. Herman, N. Griffeth, and Y. J. Lin, “Feature

interaction problem in telecommunication systems,” in Proceedings of the Seventh Inter-

national Conference on Software Engineering for Telecommunication Switching Systems,

pp. 59–62, July 1989.

[210] J. Lennox and H. Schulzrinne, “Feature interaction in Internet telephony,” in Proc. of Fea-

ture Interaction in Telecommunications and Software Systems VI, (Glasgow, United King-

dom), May 2000.

[211] International Telecommunication Union, “Principles of intelligent network architecture,”

Recommendation Q.1201, Telecommunication Standardization Sector of ITU, Geneva,

Switzerland, 1992.

[212] I. Faynberg, L. R. Gabuzda, M. P. Kaplan, and N. J. Shah, Intelligent Network Standards:

their Application to Services. New York: McGraw-Hill, 1997.

[213] International Telecommunication Union, “ Intelligent network interfaces,” Recommenda-

tion Q.1218, Telecommunication Standardization Sector of ITU, Geneva, Switzerland,

1995.

[214] V. Gurbani, “SIP enabled IN services - an implementation report,” Internet Draft, Internet

Engineering Task Force, Nov. 2000. Work in progress.

[215] V. Gurbani and V. Rastogi, “Accessing IN services from SIP networks,” Internet Draft,

Internet Engineering Task Force, Feb. 2001. Work in progress.

331

[216] D. Lebovits, “SIP/IN interworking,” Internet Draft, Internet Engineering Task Force, July

2000. Work in progress.

[217] L. Slutsman, G. Ash, F. Haerens, and V. Gurbani, “Framework and requirements for the

internet intelligent networks (IIN),” Internet Draft, Internet Engineering Task Force, Mar.

2000. Work in progress.

[218] H. Schulzrinne, L. Slutsman, I. Faynberg, and H. Lu, “ Interworking between SIP and

INAP,” Internet Draft, Internet Engineering Task Force, July 2000. Work in progress.

[219] L. Slutsman, I. Faynberg, and H. Lu, “ IN/Internet interworking in support of software

switches,” Internet Draft, Internet Engineering Task Force, June 2000. Work in progress.

[220] S. Kapur and R. Vij, “Approach for services in converged networks,” in Proceedings of the

IP Telecom Services Workshop 2000 (IPTS2000), (Atlanta, GA), Sept. 2000.

[221] K. Vemuri, “Sphinx: A study in convergent telephony,” in Proceedings of the IP Telecom

Services Workshop 2000 (IPTS2000), (Atlanta, GA), Sept. 2000.

[222] T.-C. Chiang, J. Douglas, V. Gurbani, W. Montgomery, W. Opdyke, J. Reddy, and K. Ve-

muri, “ IN services for converged (internet) telephony,” IEEE Communications Magazine,

Vol. 38, June 2000.

[223] M. Arango, A. Dugan, I. Elliott, C. Huitema, and S. Pickett, “Media gateway control

protocol (MGCP) version 1.0,” Request for Comments 2705, Internet Engineering Task

Force, Oct. 1999.

[224] F. Cuervo, N. Greene, A. Rayhan, C. Huitema, B. Rosen, and J. Segers, “Megaco protocol

version 1.0,” Request for Comments 3015, Internet Engineering Task Force, Nov. 2000.

[225] C. Huitema, J. Cameron, P. Mouchtaris, and D. Smyk, “An architecture for Internet tele-

phony service for residential customers,” IEEE Network, Vol. 13, pp. 50–57, May/June

1999.

[226] PacketCable Forum, “Network-based call signaling protocol specification,” packetcable

forum specification, PacketCable Forum, Dec. 1999.

332

[227] Object Management Group (OMG), “Common object request broker architecture specifi-

cation,” omg specification, OMG, Feb. 2001.

[228] C. Blum and R. Molva, “A software platform for distributed multimedia applications,”

in Proceedings of the 1st Workshop on Multimedia Software Development, (Berlin, Ger-

many), Mar. 1996.

[229] T. Hofte, H. van de Lugt, and H. Bakker, “A CORBA platform for component groupware,”

in Proceedings of the OZCHI96 Workshop on the Next Generation of CSCW Systems, Nov.

1996.

[230] J. K. Ousterhout, Tcl and the Tk Toolkit. Reading, Massachusetts: Addison-Wesley, 1994.

[231] M. Arango, P. Bates, R. Fish, R. Gopal, N. Griffeth, G. Herman, T. Hickey, W. Le-

land, C. Lovery, V. Mak, J. Patterson, L. Ruston, M. Segal, M. Vecchi, A. Weinrib, and

S. Wuu, “Touring Machine: a software platform for distributed multimedia applications,”

in IFIP’92, (Vancouver, Canada), p. 11, IFIP, May 1992.

[232] V. Mak, M. Arango, and T. Hickey, “The application programming interface to the Touring

Machine,” technical report, Bellcore, Morristown, New Jersey, July 1992.

[233] M. Arango, P. Bates, G. Gopal, N. Griffeth, G. Herman, T. Hickey, W. Leland, V. Mak,

L. Ruston, M. Segal, M. Vecchi, A. Weinrib, and S.-Y. Wuu, “Touring Machine: a software

infrastructure to support multimedia communications,” ACM Computer Communication

Review, Vol. 22, pp. 53–54, Mar. 1992.

[234] Arango et al., “Touring machine system,” Communications ACM, Vol. 36, pp. 68–77, Jan.

1993.

[235] M. Arango, M. Kramer, S. L. Rohall, L. Ruston, and A. Weinrib, “Enhancing the Touring

Machine API to support integrated digital transport,” in Third International Workshop on

network and operating system support for digital audio and video, (San Diego, California),

pp. 166–172, IEEE Communications Society, Nov. 1992.

333

[236] S. Znaty, T. Walter, M. Brunner, J. Hubaux, and B. Plattner, “Multimedia multipoint

teleteaching over the European ATM pilot,” in Proceedings of the 1996 International

Zurich Seminar on Digital Communications, (Zurich, Switzerland), Feb. 1996.

[237] A. Hopper, “The Medusa applications environment,” Technical Report TR 94-12 (video),

Olivetti Research Laboratory (ORL), Cambridge, England, 1994. Proceedings of European

Computer Support for Collaborative Working, Stockholm, September 1995.

[238] B. Smith, L. Rowe, and S. Yen, “Tcl distributed programming,” in Tcl/Tk Workshop,

(Berkeley, California), June 1993.

[239] A. Gokhale and D. C. Schmidt, “Measuring the performance of communication middle-

ware on high-speed networks,” ACM Computer Communication Review, Vol. 26, pp. 306–

317, Oct. 1996.

[240] D. D’Souza and A. Wills, Objects, Components, and Frameworks With UML: The Catal-

ysis Approach. Addison Wesley, 1998.

[241] M. Jung and E. W. Biersack, “A component-based architecture for software communi-

cation systems,” in IEEE International Conference and Workshop on the Engineering of

Computer Based Systems (ECBS) ECBS, (Edinburgh, Scotland), Apr. 2000.

[242] Sun Microsystems, “Javabeans,” Java community process specification, Sun Microsys-

tems, July 1997.

[243] D. Mennie and B. Pagurek, “An architecture to support dynamic composition of service

components,” in Proceedings of the 5th International Workshop on Component-Oriented

Programming (WCOP 2000), (Sophia Antipolis, France), June 2000.

[244] M. Jackson and P. Zave, “Distributed feature composition: A virtual architecture for

telecommunications services,” IEEE Transactions on Software Engineering, Aug. 1998.

[245] C. Gbaguidi, J.-P. Hubaux, G. Pacifici, and A. N. Tantawi, “An architecture for the inte-

gration of Internet and telecommunication services,” in Proceedings Openarch 99, (New

York, NY), Mar. 1999.

334

[246] G. Bond, E. Cheung, A. Forrest, M. Jackson, H. Purdy, C. Ramming, and P. Zave, “DFC

as the basis for ECLIPSE, an IP communications software platform,” in Proceedings of the

IP Telecom Services Workshop 2000 (IPTS2000), (Atlanta, GA), Sept. 2000.

[247] B. Pagurek, J. Tang, T. White, and R. Glitho, “Management of advanced services in H.323

Internet protocol telephony,” in Proceedings of the Conference on Computer Communica-

tions (IEEE Infocom), (Tel Aviv, Israel), Mar. 2000.

[248] S. Gessler, O. Haase, and A. Schrader, “A service platform for Internet telephony,” in

Proceedings of the 1st IP-Telephony Workshop (IPtel 2000), (Berlin, Germany), Apr. 2000.

[249] D. Rizzetto and C. Catania, “A voice over IP service architecture for integrated communi-

cations,” IEEE Network, Vol. 13, pp. 34–41, May/June 1999.

[250] J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming Internet telephony services,”

IEEE Network, Vol. 13, pp. 42–49, May/June 1999.

[251] J. Rosenberg, J. Lennox, and H. Schulzrinne, “Programming Internet telephony services,”

Technical Report CUCS-010-99, Columbia University, New York, New York, Mar. 1999.

[252] N. Anerousis, R. Gopalakrishnan, C. R. Kalmanek, A. E. Kaplan, W. T. Marshall, P. P.

Mishra, P. Z. Onufryk, K. K. Ramakrishnan, and C. J. Sreenan, “TOPS: an architecture

for telephony over packet networks,” IEEE Journal on Selected Areas in Communications,

Vol. 17, pp. 91–108, Jan. 1999.

[253] N. Anerousis, R. Gopalakrishnan, C. R. Kalmanek, A. E. Kaplan, W. T. Marshall, P. P.

Mishra, P. Z. Onufryk, K. K. Ramakrishnan, and C. J. Sreenan, “The TOPS architecture

for signaling, directory services and transport for packet telephony,” in Proc. International

Workshop on Network and Operating System Support for Digital Audio and Video (NOSS-

DAV), (Cambridge, England), pp. 41–53, July 1998.

[254] VoiceXML Forum, “Voice extensible markup language (VoiceXML) version 1.00,”

VoiceXML forum specification, VoiceXML Forum, Mar. 2000.

335

[255] G. Hellstrom, “RTP payload for text conversation,” Request for Comments 2793, Internet

Engineering Task Force, May 2000.

[256] H. Alvestrand, “Tags for the identification of languages,” Request for Comments 1766,

Internet Engineering Task Force, Mar. 1995.

[257] B. Campbell and R. Sparks, “Control of service context using SIP Request-URI,” Request

for Comments 3087, Internet Engineering Task Force, Apr. 2001.

[258] M. Hamdi, O. Verscheure, I. Dalgi, J.-P. Hubaux, and P.Wang, “Voice service interworking

for PSTN and IP networks,” white paper, 3Com, Santa Clara, California, Mar. 2000.

[259] G. Camarillo, “ IP telephony gateways,” Master’s thesis, Royal Institute of Technology,

Stockholm, Sweden, Nov. 1998.

[260] M. Hamdi, O. Verscheure, J.-P. Hubaux, I. Dalgic, and P. Wang, “Voice service interwork-

ing for PSTN and IP networks,” IEEE Communications Magazine, Vol. 27, pp. –, May

1999.

[261] S. Donovan and M. Cannon, “A functional description of a SIP-PSTN gateway,” Internet

Draft, Internet Engineering Task Force, Nov. 1998. Work in progress.

[262] J. C. Tang, E. A. Isaacs, and M. Rua, “Supporting distributed groups with a montage of

lightweight interactions,” in Proc. of the Conference on Computer-Supported Cooperative

Work (CSCW) ‘94, (Chapel Hill, North Carolina), pp. 23–34, Oct. 1994.

[263] M. Day, S. Aggarwal, G. Mohr, and J. Vincent, “ Instant messaging / presence protocol

requirements,” Request for Comments 2779, Internet Engineering Task Force, Feb. 2000.

[264] J. Rosenberg et al., “SIP extensions for presence,” Internet Draft, Internet Engineering

Task Force, Apr. 2001. Work in progress.

[265] J. Rosenberg et al., “SIP extensions for instant messaging,” Internet Draft, Internet Engi-

neering Task Force, Apr. 2001. Work in progress.

336

[266] S. Simeonov, “What is this thing called SOAP? here’s the background,” XML Journal,

Vol. 1, Sept. 2000.

[267] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: Session initiation pro-

tocol,” Internet Draft, Internet Engineering Task Force, Nov. 2000. Work in progress.

[268] H. Schulzrinne and J. Rosenberg, “SIP caller preferences and callee capabilities,” Internet

Draft, Internet Engineering Task Force, Nov. 2000. Work in progress.

[269] H. J. Wang, A. D. Joseph, and R. H. Katz, “A signaling system using lightweight call ses-

sions,” in Proceedings of the Conference on Computer Communications (IEEE Infocom),

(Tel Aviv, Israel), Mar. 2000.

[270] D. Cohen, “The network voice conference protocol (NVCP).” NSC Note 113, Feb. 1976.

[271] N. Kausar and J. Crowcroft, “An architecture of conference control functions,” in Proc. of

Photonics East, (Boston, Massachusetts), SPIE, Sept. 1999.

[272] E. Schooler and S. L. Casner, “An architecture for multimedia connection management,”

in Proc. of 4th IEEE ComSoc International Workshop on Multimedia Communications,

(Monterey, California), p. 5, Apr. 1992. also as ISI reprint ISI/RS-92-294.

[273] R. Sparks, “SIP call control,” Internet Draft, Internet Engineering Task Force, Feb. 2001.

Work in progress.

[274] J. Rosenberg, H. Schulzrinne, and H. Sinnreich, “SIP enabled services to support the

hearing impaired,” Internet Draft, Internet Engineering Task Force, July 2000. Work in

progress.

[275] J. Rosenberg and H. Schulzrinne, “The SIP supported header,” Internet Draft, Internet

Engineering Task Force, Feb. 2001. Work in progress.

[276] A. Kristensen and A. Byttner, “The SIP servlet API,” Internet Draft, Internet Engineering

Task Force, Sept. 1999. Work in progress.

[277] Sun Microsystems, “Java servlet API.” Available at http://java.sun.com/products/servlet/.

337

[278] H. Schulzrinne, “Providing emergency call services for SIP-based internet telephony,” In-

ternet Draft, Internet Engineering Task Force, Mar. 2001. Work in progress.

[279] D. Rubenstein, S. Kasera, D. Towsley, and J. F. Kurose, “ Improving reliable multicast

using active parity encoding services (APES),” Tech. Rep. 98-79, Department of Computer

Science, University of Massachusetts, Amherst, Massachusetts, July 1998.

[280] S. Floyd and V. Jacobson, “The synchronization of periodic routing messages,” IEEE/ACM

Transactions on Networking, Vol. 2, pp. 122–136, Apr. 1994.

